A Convolution Related to the Inverse Kontorovich-Lebedev Transform
DOI:
https://doi.org/10.5644/SJM.03.2.08Keywords:
Kontorovich-Lebedev transform, modified Bessel function, convolution integral equations, Plancherel theorem, multiplication theoremAbstract
We establish the mapping properties in the space $L_2({\mathbb
R}_+;\frac{dt}{t\sinh \nu t})$, $0<\nu\le\pi$ for a convolution related to the transformation
\[
F(x)=\int\limits_0^\infty f(t) K_{it}(x)\,dt, \quad x\in{\mathbb R}_{+}
\]
involving the modified Bessel function $K_{it}(x)$ as a kernel. It is shown that the convolution operator of two $L_2$-functions exists as a Lebesgue integral and represents a continuous function on ${\mathbb R}_+$. As a consequence, we get the multiplication theorem for two modified Bessel functions of different subscripts. Further applications to the corresponding class of convolution integral equations are obtained.
2000 Mathematics Subject Classification. 44A15, 44A05, 44A35, 33C10, 45A05
Downloads
References
S. B. Yakubovich, Index Transforms, World Scientific Publishing Company, Singapore, New Jersey, London and Hong Kong, 1996.
S. B. Yakubovich, The Kontorovich-Lebedev transformation on Sobolev type spaces, Sarajevo J. Math., 1 (2005), 211–234.
A. Erdelyi et al., ´ Higher Transcendental Functions, Vol.1-2, New York, Toronto, London: MC Graw Hill, 1953.
A. P. Prudnikov, Yu. A. Brychkov and O. I. Marichev, Integrals and Series: Vol. II: Special Functions, Gordon and Breach, New York and London, 1986.
V. A. Kakichev, On the convolutions for integral transforms, Izv. Acad. Nauk BSSR. Ser. Fiz.-Mat. Nauk., 2 (1967), 48–57 (in Russian).
S. B. Yakubovich, Boundedness and inversion properties of certain convolution transforms, J. Korean Math. Soc., 40 (6) (2003), 999–1014.
S. B. Yakubovich, Convolution Hilbert spaces associated with the Kontorovich-Lebedev transformation, Thai J. Math., 1 (2) (2003), 9–16.
S. B. Yakubovich, On the convolution for the Kontorovich-Lebedev transform and its applications to integral equations, Dokl. Acad. Nauk BSSR., 31 (2) (1987), 101–103 (in Russian).
S. B. Yakubovich, Integral transforms of the Kontorovich-Lebedev convolution type, Collect. Math., 54 (2) (2003), 99–110.
S. B. Yakubovich and L. E. Britvina, A convolution for the Kontorovich-Lebedev transform, Abstr. of the Intern. Conf. ”Matematika v vyze”, Velikiy Novgorod, (2005), 98–99 (in Russian).