A Convolution Related to the Inverse Kontorovich-Lebedev Transform

Authors

  • S. B. Yakubovich Department of Pure Mathematics, Faculty of Sciences, University of Porto, Porto, Portugal
  • L. E. Britvina Department of Theoretical and Mathematical Physics, Novgorod State University, Novgorod the Great, Russia

DOI:

https://doi.org/10.5644/SJM.03.2.08

Keywords:

Kontorovich-Lebedev transform, modified Bessel function, convolution integral equations, Plancherel theorem, multiplication theorem

Abstract

We establish the mapping properties in the space $L_2({\mathbb
R}_+;\frac{dt}{t\sinh \nu t})$, $0<\nu\le\pi$ for a convolution related to the transformation
\[
F(x)=\int\limits_0^\infty f(t) K_{it}(x)\,dt, \quad x\in{\mathbb R}_{+}
\]
involving the modified Bessel function $K_{it}(x)$ as a kernel. It is shown that the convolution operator of two $L_2$-functions exists as a Lebesgue integral and represents a continuous function on ${\mathbb R}_+$. As a consequence, we get the multiplication theorem for two modified Bessel functions of different subscripts. Further applications to the corresponding class of convolution integral equations are obtained.

 

2000 Mathematics Subject Classification. 44A15, 44A05, 44A35, 33C10, 45A05

Downloads

Download data is not yet available.

References

S. B. Yakubovich, Index Transforms, World Scientific Publishing Company, Singapore, New Jersey, London and Hong Kong, 1996.

S. B. Yakubovich, The Kontorovich-Lebedev transformation on Sobolev type spaces, Sarajevo J. Math., 1 (2005), 211–234.

A. Erdelyi et al., ´ Higher Transcendental Functions, Vol.1-2, New York, Toronto, London: MC Graw Hill, 1953.

A. P. Prudnikov, Yu. A. Brychkov and O. I. Marichev, Integrals and Series: Vol. II: Special Functions, Gordon and Breach, New York and London, 1986.

V. A. Kakichev, On the convolutions for integral transforms, Izv. Acad. Nauk BSSR. Ser. Fiz.-Mat. Nauk., 2 (1967), 48–57 (in Russian).

S. B. Yakubovich, Boundedness and inversion properties of certain convolution transforms, J. Korean Math. Soc., 40 (6) (2003), 999–1014.

S. B. Yakubovich, Convolution Hilbert spaces associated with the Kontorovich-Lebedev transformation, Thai J. Math., 1 (2) (2003), 9–16.

S. B. Yakubovich, On the convolution for the Kontorovich-Lebedev transform and its applications to integral equations, Dokl. Acad. Nauk BSSR., 31 (2) (1987), 101–103 (in Russian).

S. B. Yakubovich, Integral transforms of the Kontorovich-Lebedev convolution type, Collect. Math., 54 (2) (2003), 99–110.

S. B. Yakubovich and L. E. Britvina, A convolution for the Kontorovich-Lebedev transform, Abstr. of the Intern. Conf. ”Matematika v vyze”, Velikiy Novgorod, (2005), 98–99 (in Russian).

Downloads

Published

12.06.2024

How to Cite

Yakubovich, S. B., & Britvina, L. E. (2024). A Convolution Related to the Inverse Kontorovich-Lebedev Transform. Sarajevo Journal of Mathematics, 3(2), 215–232. https://doi.org/10.5644/SJM.03.2.08

Issue

Section

Articles