On the Functional Equation $\boldsymbol{U}_{\boldsymbol{t}}\boldsymbol{+} \boldsymbol{U}_{\boldsymbol{-t}} = \boldsymbol{V}_{\boldsymbol{t}} \boldsymbol{+} \boldsymbol{V}_{\boldsymbol{-t}}$ in a Banach Space
DOI:
https://doi.org/10.5644/SJM.03.2.10Keywords:
Commuting one-parameter group of unitary operators, reflexive strictly convex Banach space with Gateaux differentiable normAbstract
In this paper we consider commuting one-parameter groups, $\{U_{t} : t \in R\}$ and $\{V_{t} : t\in R\}$ of unitary operators and the functional equation $U_{t} + U_{-t} = V_{t} + V_{-t}$ on a reflexive strictly convex Banach space with Gateaux differentiable norm.
2000 Mathematics Subject Classification. 47D03
Downloads
References
S. Ishikawa, Hilbert transforms on one-parametar groups of operators I, II, Tokyo J. Math., 9 (2) (1986), 383–393, 395–414.
S. Kurepa, Funkcionalna analiza, Skolska knjiga, Zagreb, 1990.
R. A. Tapia, A characterization of inner product spaces, Proc. Am. Math. Soc., 41 (1973), 569–574.
A. B. Thaheem i Noor Mohammad, On functional equation over Hilbert spaces, Funkc. Ekvacioj, 32 (1989), 479–481.
F. Vajzovi´c and A. Sahovi´c, ˇ Cosine operator functions and Hilbert transforms, Novi Sad J. Math., 35 (2) (2005), 41–55.