Coincidence Points Under Weak Contractions on Symmetric Spaces
DOI:
https://doi.org/10.5644/SJM.03.2.11Keywords:
Iterative sequence, contraction, fixed point and coincidence point, symmetric spaceAbstract
In this paper we prove some results on the existence of coincidence points for weak hybrid contractions on symmetric spaces. These results improve and generalize some known results. In particular, recent fixed point results due to Hicks [3] are generalized.
2000 Mathematics Subject Classification. 47H10, 54H25
Downloads
References
M. Aamri and D. El-Moutawakil, Common fixed points under contractive conditions in symmetric spaces, App. Math. E-Notes, 3 (2003), 156–162.
T. L. Hicks, Fixed point theorems for multivalued mappings, Indian J. Pure Appl. Math., 20 (11) (1989), 1077–1079.
T. L. Hicks, Fixed point theorems for multivalued mappings II, Indian J. Pure Appl. Math., 29 (2) (1998), 133–137.
T. L. Hicks and B. E. Rhoades, Fixed point theory in symmetric spaces with applications to probabilistic spaces, Nonlinear Analysis, 36 (1999), 331–344.
M. Imdad, J. Ali and L. Khan, Coincidence and fixed points in symmetric spaces under strict contractions, J. Math. Anal. Appl., 320 (2006) 352–360.
G. Jungck, Commuting mappings and fixed points, Amer. Math. Monthly, 83 (1976), 261–263.
H. Kaneko, Singlevalued and multivalued f-contractions, Boll. U.M.I., (6) 4-A (1985), 29–33.
M. S. Khan, Y. J. Cho, W. T. Park and T. Mumtaz, Coincidence and common fixed points of hybrid contractions, J. Austral. Math. Soc. (Series A), 55 (1993), 369–385.
A. Latif and A. A. Abou-Hajar, On coincidence and hybrid fixed points, Inter. J. Math. Game Theory and Algebra, 12 (1) (2002), 39–45.
A. Latif and A. A. Abou-Hajar, On coincidence and hybrid fixed points II, Rad. Mat., 11 (2002), 119–123.
A. Latif and I. Tweddle, Some results on coincidence points, Bull. Austral. Math. Soc., 59 (1999), 111–117.
S. B. Nadler, Multivalued contraction mappings, Pacific J. Math., 30 (2) (1969), 475–488.
S. A. Naimpally, S. L. Singh and J. H. M. Whitfield, Coincidence theorems for hybrid contractions, Math. Nachr., 127 (1986), 177–180.
S. L. Singh and C. Kulshrestha, Coincidence theorems in metric spaces, Indian J. Phys. Nat. Sci., B2 (1982), 19–22.
W. A. Wilson, On semi-metric spaces, Amer. J. Math., 53 (1931), 361–373.