On Triangles With Fibonacci and Lucas Numbers as Coordinates

Authors

  • Zvonko Čerin Kopernikova 7, 10010 Zagreb, Croatia

DOI:

https://doi.org/10.5644/SJM.03.1.01

Abstract

We consider triangles in the plane with coordinates of points from the Fibonacci and Lucas sequences.

 

2000 Mathematics Subject Classification. 11B39

Downloads

Download data is not yet available.

References

Z. Čerin, Hyperbolas, orthology, and antipedal triangles, Glasnik Mat., 33 (1998), 143–160.

Z. Čerin, On propellers from triangles, Beitr. Algebra Geom., 42 (2) (2001), 575–582.

V. E. Hoggatt, Jr., Fibonacci and Lucas numbers, The Fibonacci Association, Santa Clara, 1979.

Ross Honsberger, Episodes in nineteenth and twentieth century Euclidean geometry, The Mathematical Association of America, New Mathematical Library no. 37 Washington, 1995.

R. A. Johnson, Advanced Euclidean Geometry, Dover Publications (New York), 1960.

R. Knott, Fibonacci numbers and the Golden Section, Mathematical Gazette, http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/fib.html.

Downloads

Published

12.06.2024

How to Cite

Čerin, Z. (2024). On Triangles With Fibonacci and Lucas Numbers as Coordinates. Sarajevo Journal of Mathematics, 3(1), 3–7. https://doi.org/10.5644/SJM.03.1.01

Issue

Section

Articles