On Triangles With Fibonacci and Lucas Numbers as Coordinates
DOI:
https://doi.org/10.5644/SJM.03.1.01Abstract
We consider triangles in the plane with coordinates of points from the Fibonacci and Lucas sequences.
2000 Mathematics Subject Classification. 11B39
Downloads
References
Z. Čerin, Hyperbolas, orthology, and antipedal triangles, Glasnik Mat., 33 (1998), 143–160.
Z. Čerin, On propellers from triangles, Beitr. Algebra Geom., 42 (2) (2001), 575–582.
V. E. Hoggatt, Jr., Fibonacci and Lucas numbers, The Fibonacci Association, Santa Clara, 1979.
Ross Honsberger, Episodes in nineteenth and twentieth century Euclidean geometry, The Mathematical Association of America, New Mathematical Library no. 37 Washington, 1995.
R. A. Johnson, Advanced Euclidean Geometry, Dover Publications (New York), 1960.
R. Knott, Fibonacci numbers and the Golden Section, Mathematical Gazette, http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fibonacci/fib.html.