On Split Exact Sequences and Projective Semimodules
DOI:
https://doi.org/10.5644/SJM.03.1.03Abstract
In this paper the notion of split exact sequences of semimodules is introduced. We also study some results on projective semimodules that are analogous to module theory.
2000 Mathematics Subject Classification. 16Y60
Downloads
References
Barry Mitchell, Theory of Categories, Academic Press, New York–London, 1965.
John Dauns, Modules and Rings, Cambridge University Press, 1994.
D. G. Northcott, First course of homological algebra, Cambridge Uniersity Press, 1973.
I. S. Luther and I. B. S. Passi, Alegebra, Volume 3, Modules, Narosa Publications, New Delhi, 2002.
J. S. Golan, The theory of semirings with application in mathematics and theoretical computer sciences, Pitman Monographs and Surveys in Pure and Applied Mathematics, 54, Longman Sci. Tech. Horlow, 1992.
M. R. Adhikari and P. Mukhophadhyay, Exact sequences of semimodule, Bull. Cal. Math. Society, 94 (1), (2002), 23–32.
Michihiro Takahasi, On the Bordism categories II, Math. Semin. Notes, 9 (1981).
Michihiro Takahasi, Extensions of semimodules II, Math. Semin. Notes, 11 (1983), 83–118.
S. K. Bhambri and Manish Kant Dubey, Some results on exact sequences of semimodules analogues to module thoery, Soochow J. Math., 32 (4) (2006), 485–498.
T. S. Blyth, Modules Theory, Second edition, Clarendon Press, Oxford, 1990.