On Split Exact Sequences and Projective Semimodules

Authors

  • S. K. Bhambri Department of Mathematics, Kirorimal College, University of Delhi, Delhi, India
  • Manish Kant Dubey Department of Mathematics, University of Delhi, Delhi, India

DOI:

https://doi.org/10.5644/SJM.03.1.03

Abstract

In this paper the notion of split exact sequences of semimodules is introduced. We also study some results on projective semimodules that are analogous to module theory.

 

2000 Mathematics Subject Classification. 16Y60

Downloads

Download data is not yet available.

References

Barry Mitchell, Theory of Categories, Academic Press, New York–London, 1965.

John Dauns, Modules and Rings, Cambridge University Press, 1994.

D. G. Northcott, First course of homological algebra, Cambridge Uniersity Press, 1973.

I. S. Luther and I. B. S. Passi, Alegebra, Volume 3, Modules, Narosa Publications, New Delhi, 2002.

J. S. Golan, The theory of semirings with application in mathematics and theoretical computer sciences, Pitman Monographs and Surveys in Pure and Applied Mathematics, 54, Longman Sci. Tech. Horlow, 1992.

M. R. Adhikari and P. Mukhophadhyay, Exact sequences of semimodule, Bull. Cal. Math. Society, 94 (1), (2002), 23–32.

Michihiro Takahasi, On the Bordism categories II, Math. Semin. Notes, 9 (1981).

Michihiro Takahasi, Extensions of semimodules II, Math. Semin. Notes, 11 (1983), 83–118.

S. K. Bhambri and Manish Kant Dubey, Some results on exact sequences of semimodules analogues to module thoery, Soochow J. Math., 32 (4) (2006), 485–498.

T. S. Blyth, Modules Theory, Second edition, Clarendon Press, Oxford, 1990.

Downloads

Published

12.06.2024

How to Cite

Bhambri, S. K., & Dubey, M. K. (2024). On Split Exact Sequences and Projective Semimodules. Sarajevo Journal of Mathematics, 3(1), 15–28. https://doi.org/10.5644/SJM.03.1.03

Issue

Section

Articles