On Special Weakly Ricci-Symmetric Kenmotsu Manifolds
DOI:
https://doi.org/10.5644/SJM.03.1.09Keywords:
Kenmotsu manifold, special weakly Ricci-symmetric manifold, Einstein manifoldAbstract
In this paper, we have studied special weakly Ricci symmetric Kenmotsu manifolds. We show that if a special weakly Riccisymmetric Kenmotsu manifold admits a cyclic parallel Ricci tensor then the associate 1–form $\alpha$ must be zero. On the other hand we show that a special weakly Ricci-symmetric Kenmotsu manifold can not be an Einstein manifold if the associate 1–form $\alpha$ $\neq$ 0 and Ricci tensor of a special weakly Ricci-symmetric Kenmotsu manifold is parallel.
2000 Mathematics Subject Classification. 53C21, 53C25
Downloads
References
D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics, 203. Birkh¨auser Boston, Inc., Boston, MA, 2002.
M. C. Chaki, On pseudo symmetric manifolds, An. Stiint. Univ. Al. I. Cuza Iasi Sect. I a Mat., 33 (1) (1987), 53–58.
M. C. Chaki, On pseudo Ricci symmetric manifolds, Bulgar. J. Phys., 15 (6) (1988), 526–531.
U. C. De, A. A. Shaikh, S. Biswas, On weakly symmetric contact metric manifolds, Tensor (N.S.), 64 (2) (2003), 170–175.
S. Hong, C. Ozg¨ur and M. M. Tripathi, ¨ On some special classes of Kenmotsu manifolds, Kuwait J. Sci. Eng., (to appear).
K. Kenmotsu, A class of contact Riemannian manifold , Tohoku Math. J., 24 (1972), 93-103.
J-B. Jun, U. C. De and G. Pathak, On Kenmotsu manifolds , J. Korean Math. Soc., 42 (3) (2005), 435-445.
H. Singh, Q. Khan, On special weakly symmetric Riemannian manifolds, Publ. Math. Debrecen, Hungary 58 (2001), 523–536.
C. Ozg¨ur and U. C. De, ¨ On the quasi-conformal curvature tensor of a Kenmotsu manifold, Math. Pannonica, (to appear).
C. Ozg¨ur, ¨ On weak symmetries of Lorentzian para-Sasakian manifolds, Rad. Mat., 11 (2) (2002/03), 263–270.
C. Ozg¨ur, ¨ On weakly symmetric Kenmotsu manifolds, Differ. Geom. Dyn. Syst., 8 (2006), 204–209.
L. Tam´assy and T. Q. Binh, On weak symmetries of Einstein and Sasakian manifolds, International Conference on Differential Geometry and its Applications (Bucharest, 1992). Tensor (N.S.), 53 (1993), Commemoration Volume I, 140–148.
L. Tam´assy and T. Q. Binh, On weakly symmetric and weakly projective symmetric Riemannian manifolds, Differential geometry and its applications (Eger, 1989), 663–670, Colloq. Math. Soc. J´anos Bolyai, 56, North-Holland, Amsterdam, 1992.