On Special Weakly Ricci-Symmetric Kenmotsu Manifolds

Authors

  • Nesip Aktan Department of Mathematics, Afyon Kocatepe University, Afyonkarahisar, Turkey
  • Ali Gorgülü Department of Mathematics, Eski¸sehir Osmangazi University, Eski¸sehir, Turkey
  • Erdal Özüsağlam Department of Mathematics, Eski¸sehir Osmangazi University, Eski¸sehir, Turkey

DOI:

https://doi.org/10.5644/SJM.03.1.09

Keywords:

Kenmotsu manifold, special weakly Ricci-symmetric manifold, Einstein manifold

Abstract

In this paper, we have studied special weakly Ricci symmetric Kenmotsu manifolds. We show that if a special weakly Riccisymmetric Kenmotsu manifold admits a cyclic parallel Ricci tensor then the associate 1–form $\alpha$ must be zero. On the other hand we show that a special weakly Ricci-symmetric Kenmotsu manifold can not be an Einstein manifold if the associate 1–form $\alpha$ $\neq$ 0 and Ricci tensor of a special weakly Ricci-symmetric Kenmotsu manifold is parallel.

 

2000 Mathematics Subject Classification. 53C21, 53C25

Downloads

Download data is not yet available.

References

D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics, 203. Birkh¨auser Boston, Inc., Boston, MA, 2002.

M. C. Chaki, On pseudo symmetric manifolds, An. Stiint. Univ. Al. I. Cuza Iasi Sect. I a Mat., 33 (1) (1987), 53–58.

M. C. Chaki, On pseudo Ricci symmetric manifolds, Bulgar. J. Phys., 15 (6) (1988), 526–531.

U. C. De, A. A. Shaikh, S. Biswas, On weakly symmetric contact metric manifolds, Tensor (N.S.), 64 (2) (2003), 170–175.

S. Hong, C. Ozg¨ur and M. M. Tripathi, ¨ On some special classes of Kenmotsu manifolds, Kuwait J. Sci. Eng., (to appear).

K. Kenmotsu, A class of contact Riemannian manifold , Tohoku Math. J., 24 (1972), 93-103.

J-B. Jun, U. C. De and G. Pathak, On Kenmotsu manifolds , J. Korean Math. Soc., 42 (3) (2005), 435-445.

H. Singh, Q. Khan, On special weakly symmetric Riemannian manifolds, Publ. Math. Debrecen, Hungary 58 (2001), 523–536.

C. Ozg¨ur and U. C. De, ¨ On the quasi-conformal curvature tensor of a Kenmotsu manifold, Math. Pannonica, (to appear).

C. Ozg¨ur, ¨ On weak symmetries of Lorentzian para-Sasakian manifolds, Rad. Mat., 11 (2) (2002/03), 263–270.

C. Ozg¨ur, ¨ On weakly symmetric Kenmotsu manifolds, Differ. Geom. Dyn. Syst., 8 (2006), 204–209.

L. Tam´assy and T. Q. Binh, On weak symmetries of Einstein and Sasakian manifolds, International Conference on Differential Geometry and its Applications (Bucharest, 1992). Tensor (N.S.), 53 (1993), Commemoration Volume I, 140–148.

L. Tam´assy and T. Q. Binh, On weakly symmetric and weakly projective symmetric Riemannian manifolds, Differential geometry and its applications (Eger, 1989), 663–670, Colloq. Math. Soc. J´anos Bolyai, 56, North-Holland, Amsterdam, 1992.

Downloads

Published

12.06.2024

How to Cite

Aktan, N., Gorgülü, A., & Özüsağlam, E. (2024). On Special Weakly Ricci-Symmetric Kenmotsu Manifolds. Sarajevo Journal of Mathematics, 3(1), 93–97. https://doi.org/10.5644/SJM.03.1.09

Issue

Section

Articles