Some Noiseless Coding Theorems of Inaccuracy Measure of Order $\alpha$ and Type $\beta$
DOI:
https://doi.org/10.5644/SJM.03.1.14Keywords:
Generalized inaccuracy measures, mean code word length, Hölder's inequalityAbstract
In this paper, we propose a parametric `useful' mean code length which is weighted by utilities and generalizes some well known mean code lengths available in the literature. The object of this paper is to establish some results on noiseless coding theorems for the proposed parametric `useful' mean code length in terms of generalized "useful" inaccuracy measure of order $\alpha$ and type $\beta$.
1991 Mathematics Subject Classification. 94A17, 94A24
Downloads
References
R. Autar and A. B. Khan, On generalized useful information for incomplete distribution, J. Comb. Inf. Syst. Sci., 14 (4) (1989), 187–191.
P. K. Bhatia, On a generalized ‘useful’ inaccuracy for incomplete probability distribution, Soochow J. Math., 25 (2) (1999), 131–135.
P. K. Bhatia, Useful inaccuracy of order α and 1.1 coding, Soochow J. Math., 21 (1) (1995), 81–87.
L. L. Campbell, A coding theorem of Renyi’s entropy, Inf. Control, 8 (1965), 423–429.
A. Feinstein, Foundation of Information Theory, Mc Graw Hill, New York.
S. Guiasu and C. F. Picard, Borne inferieture de la longuerur utile de certians codes, C. R. Acad. Sci., Paris, Ser. A–B, 273 (1971), 248–251.
Gurdial and F. Pessoa, On ‘useful’ information of order α, J. Comb. Inf. Syst. Sci., 2 (1977), 30–35.
D. S. Hooda and U. S. Bhaker, A Generalized ‘useful’ information measure and coding theorem, Soochow J. Math., 23 (1) (1997), 53–62.
P. Jain and R. K. Tuteja, On coding theorem connected with ‘useful’ entropy of order β, Int. J. Math. Math. Sci., 12 (1) (1989), 193–198.
D. F. Kerridge, Inaccuracy and inference, J. R. Stat. Soc., Ser. B, 23 (1961), 184–194.
A. B. Khan and Haseen Ahmad, Some noiseless coding theorems of entropy of order α of the power distribution $P^beta $}, Metron, 39 (3–4) (1981), 87–94.
G. Longo, Quantitative-qualitative Measure of Information, Springer Verlag, New York, 1972.
P. Nath, An axiomatic characterization of inaccuracy for discrete generalized probability distribution, Opsearch, 7 (1970), 115–133.
A. Renyi, On measure of entropy and information, Proceeding 4th Berkley Symposium on Mathematical Statistics and Probability, University of California Press, (1966), 547–561 .
L. K. Roy, Comparison of Renyi’s entropy of power distribution, ZAMM, 56 (1976), 217–218.
C. E. Shannon, The mathematical theory communication, Bell. Syst. Tech. J, 27 (1948), 379–423, 623–656.
O. Shisha, Inequalities, Academic Press, New York (1967).
R. P. Singh, R. Kumar and R. K. Tuteja, Applications of H¨olders inequality in information theory, Inf. Sci., 152 (2003), 135–154.
H. C. Taneja and R. K. Tuteja, Characterization of quantitative-qualititative measure of inaccuracy, Kibernetika, 2 (1985), 393–402.
H. C. Taneja, D. S. Hooda and R. K. Tuteja, Coding theorems on a generalized ‘useful’ information, Soochow J. Math., 11 (1985), 123–131.