Strong Truncated Matrix Moment Problem of Hamburger
DOI:
https://doi.org/10.5644/SJM.02.2.06Keywords:
Strong matrix moment problem, orthogonal Laurent polynomials, extensions of Hermitian operatorsAbstract
In this paper we consider the strong truncated matrix moment problem on the real line. We describe all the solutions of the problem in the form of a Nevanlinna type formula. We use M. G. Kreĭn's theory of representations for Hermitian operators and the technique of boundary triplets and the corresponding Weyl functions.
2000 Mathematics Subject Classification. 44A60; 47A57, 42C05
Downloads
References
V. M. Adamyan and I. M. Tkachenko, Solutions of the truncated matrix Hamburger moment problem according to M. G. Krein, Oper. Theory Adv. Appl., 118 (2000), 33–51.
N. I. Ahiezer and I. M. Glazman, Theory of Linear Operators in Hilbert Space, Izdat. “Nauka”, Moscow, 1966.
Yu. M. Berezanski˘ı, Expansions in Eigenfunctions of Selfadjoint Operators, Akademij´a Nauk Ukrainsko˘ı SSSR. Institut Matematiki, Izdat. “Naukova Dumka”, Kiev, 1965.
M. S. Brodski˘ı, Triangular and Jordan Representations of Linear Operators, Izdat. “Nauka”, Moscow, 1969.
V. A. Derkach, On generalized resolvents of Hermitian relations in Krein spaces, J. Math. Sci., 97 (5) (1999), 4420–4460.
V. A. Derkach and M. M Malamud, Generalized resolvents and the boundary value problems for Hermitian operators with gaps, J. Funct. Anal., 95 (1) (1991), 1–95.
------, The extension theory of Hermitian operators and the moment problem, J. Math. Sci., 73 (2) (1995), 141–242.
H. Dym, On Hermitian block Hankel matrices, matrix polynomials, the Hamburger moment problem, interpolation and maximum entropy, Integral Equations Operator Theory, 12 (1989), 757–812.
M. L. Gorbachuk and V. I. Gorbachuk, M. G. Krein’s Lectures on Entire Operators, Birkh¨auser Verlag, Basel, Boston, Berlin, 1997.
V. I. Gorbachuk and M. L. Gorbachuk, Boundary Value Problems for Differential Equations, “Naukova Dumka”, Kiev, 1984.
W. B. Jones, O. Nj˚astad, and W. J. Thron, Continued fractions and strong Hamburger moment problems, Proc. London Math. Soc., (3) 47 (2) (1983), 363–384.
W. B. Jones and Olav Nj˚astad, Orthogonal Laurent polynomials and strong moment theory: a survey, J. Comput. Appl. Math., 105 (1–2) (1999), 51–91.
W. B. Jones, W. J. Thron, and O. Nj˚astad, Orthogonal Laurent polynomials and the strong Hamburger moment problem, J. Math. Anal. Appl., 98 (2) (1984), 528–554.
W. B. Jones, W. J. Thron, and H. Waadeland, A strong Stieltjes moment problem, Trans. Amer. Math. Soc., 261 (1980), 503–528.
I. S. Kats and A. A. Nudelman, Strong Stieltjes moment problem, St. Peterburg Math. J., 8 (6) (1997), 931–950.
I. V. Kovalishina, New aspects of the classical problem of moments, Izv. Akad. Nauk SSSR Ser. Mat., 47 (455) (1983).
M. G. Kre˘ın, The fundamental propositions of the theory of representations of Hermitian operators with deficiency index (m, m), Ukrain. Mat. Zh., 1 (2) (1949), 3–66.
------, Infinite J-matrices and a matrix moment problem, Doklady Akad. Nauk SSSR (N.S.), 69 (1949), 125–128.
M. G. Kre˘ın and G. K. Langer, The defect subspaces and generalized resolvents of a Hermitian operator in the space Πκ, Funktsional. Anal. Prilozhen., 5 (2) (1971), 59–71.
------, The defect subspaces and generalized resolvents of a Hermitian operator in the space Πκ, Funkcional. Anal. Prilozhen., 5 (3) (1971), 54–69.
M. G. Kre˘ın and S. N. Saakjan, ˇ Certain new results in the theory of resolvents of Hermitian operators, Dokl. Akad. Nauk SSSR, 169 (1966), 1269–1272.
O. Nj˚astad, Solutions of the strong Hamburger moment problem, J. Math. Anal. Appl., 197 (1996), 227–248.
K. K. Simonov, Strong Hamburger moment problem, Uch. Zapiski TNU 15 (1) (2002), 36–38.
------, Orthogonal matrix Laurent polynomials, Math. Notes, 79 (1–2) (2006), 292–296.