On the Non-commutative Neutrix Product of the Distributions $\delta ^{(r)}(x)$ and $x^{-s}\ln^m|x|$}

Authors

  • Brian Fisher Department of Mathematics, Leicester University, Leicester, England
  • Inci Ege Department of Mathematics, University of Hacettepe, Beytepe, Ankara, Turkey
  • Emin Özçag Department of Mathematics, niversity of Hacettepe, Beytepe, Ankara, Turkey

DOI:

https://doi.org/10.5644/SJM.02.2.08

Keywords:

Distribution, delta-function, neutrix, neutrix limit, neutrix product

Abstract

It is proved that the non-commutative neutrix product of the distributions $ \delta ^{(r)}(x)$ and $x^{-s} \ln^m|x|$ exists and $$ \delta ^{(r)}(x) \circ x^{-s} \ln^m |x| = 0 $$ for $r,m=0,1,2, \ldots$ and $s = 1,2, \ldots.$

 

2000 Mathematics Subject Classification. 46F10

Downloads

Download data is not yet available.

References

J.G. van der Corput, Introduction to the neutrix calculus, J. Anal. Math., 7 (1959-60), 291–398.

B. Fisher, The product of distributions, Quart. J. Math. Oxford, 22 (2) (1971), 291–298.

B. Fisher, A non-commutative neutrix product of distributions, Math. Nachr., 108 (1982), 117–127.

I.M. Gel’fand and G.E. Shilov, Generalized Functions, Vol. I, Academic Press, 1964.

Downloads

Published

12.06.2024

How to Cite

Fisher, B., Ege, I., & Özçag, E. (2024). On the Non-commutative Neutrix Product of the Distributions $\delta ^{(r)}(x)$ and $x^{-s}\ln^m|x|$}. Sarajevo Journal of Mathematics, 2(2), 211–221. https://doi.org/10.5644/SJM.02.2.08

Issue

Section

Articles