Right $\pi$-Regular Semirings

Authors

  • Vishnu Gupta Department of Mathematics, University of Delhi, Delhi, India
  • J. N. Chaudhari Department of Mathematics, M.J. College, Jalgaon, India

DOI:

https://doi.org/10.5644/SJM.02.1.01

Keywords:

Semiring, subtractive ideal, partitioning ideal, quotient semiring, right $\pi$-regular semiring, right regular semiring, $\pi$-regular semiring, regular semiring, right semiregular right ideal, Jacobson-Bourne radical, semiprime semiring, semisimple semiring, right Arthinian semiring, right Noetherian semiring

Abstract

We prove the following results (1) If $R$ is a right and left $\pi$-regular semiring then $R$ is a $\pi$-regular semiring. (2) If $R$ is an additive cancellative semiprime, right Artinian or right $\pi$-regular right Noetherian semiring then $R$ is semisimple. (3) Let $I$ be a partitioning ideal of a semiring $R$ such that $Q=(R-I)\cup \{0\}$. If $I$ is a right regular ideal and the quotient semiring $R/I$ is right $\pi$-regular then $R$ is a right $\pi$-regular semiring.

 

2000 Mathematics Subject Classification. 16Y60

Downloads

Download data is not yet available.

References

M. R. Adhikari, M. K. Sen and H. J. Weinert, On k-regular semirings, Bull. Cal. Math. Soc., 88 (1996), 141–144.

P. J. Allen, A fundamental theorem of homomorphism for semirings, Proc. Amer. Math. Soc., 21 (1969), 412–416.

P. B. Bhattacharya, S. K. Jain and S. R. Nagpaul, Basic Abstract Algebra, Cambridge University Press, 1986.

S. Bourne, The Jacobson radical of a semiring, Prec. Nat. Acad. Sci., 37 (1951), 163–170.

J. N. Chaudhari and V. Gupta, Weak primary decomposition theorem for right noetherian semirings, Indian J. Pure and Appl. Math., 25 (1994),647–654.

F. Dischinger, π-reguliers, C.R. Acad. Sci. Paris, 283A (1976), 571–573.

S. Ghosh, A note on regularity in matrix semirings, Kyungpook Math J., 44 (2004), 1–4.

J. S. Golan, The Theory of Semirings with Applications in Mathematics and Theoretical Computer Science, John Wiley and Sons, New York. 1992.

V. Gupta and J. N. Chaudhari, Some remarks on semirings, Rad. Mat., 12 (2003), 13–18.

U. Hebisch and H. J. Weinert, Semirings-Algebraic Theory and Applications in Computer Science, World Scientific Publishing Co. Pvt. Ltd., 1998.

Y. Hirano, Some studies of strongly π-regular rings, Math J. Okayama Univ., 20 (1978), 141–149.

K. Iizuka, On the Jacobson radical of a semiring, Tohoku Math. J., 11 (1959), 409–421.

M. K. Sen and P. Mukhopadhyay, Von Neumann regularity in semirings, Kyungpook Math. J., 35 (1995), 249–258.

Downloads

Published

12.06.2024

How to Cite

Gupta, V., & Chaudhari, J. N. (2024). Right $\pi$-Regular Semirings. Sarajevo Journal of Mathematics, 2(1), 3–9. https://doi.org/10.5644/SJM.02.1.01

Issue

Section

Articles