Some Commutative Neutrix Convolutions Involving the Fresnel Integrals
DOI:
https://doi.org/10.5644/SJM.02.1.02Keywords:
Fresnel cosine integral, Fresnel sine integral, convolution, commutative neutrix convolutionAbstract
The Fresnel cosine integral C$(x)$, the Fresnel sine integral S$(x)$ and the associated functions $C_+(x)$, $C_-(x)$, $S_+(x)$ and $S_-(x)$ are defined as locally summable functions on the real line. Some convolutions and commutative neutrix convolutions of the Fresnel sine integral and its associated functions with $x^r$ are evaluated.
1991 Mathematics Subject Classification. 33B10, 46F10
Downloads
References
J. G. van der Corput, Introduction to the neutrix calculus, J. Analyse Math., 7 (1959–60), 291–398.
B. Fisher, Neutrices and the convolution of distributions, Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat., 17 (1987), 119–135.
B. Fisher and C. K. Li, A commutative neutrix convolution product of distributions, Univ. u Novom Sadu Zb. Prirod.-Mat. Fak. Ser. Mat., 23 (1993), 13–27.
B. Fisher, E. Oz¸ca¯g and U. G¨ulen, ¨ The exponential integral and the commutative neutrix convolution product, J. Analysis, 7 (1999), 7–20.
B. Fisher, M. Telci and D. D¯urko˘glu, On the Fresnel integrals, Makedon. Akad. Nauk. Umet. Oddel Mat.-Tehn. Nauk Prilozik, 23–24 (1–2)(2002–2003), 57–69.
I. M. Gel’fand and G. E. Shilov, Generalized Functions, Vol. I, Academic Press (1964).
S. Gradshteyn and I. Ryzhik, Table of Integrals, Series and Products, Academic Press (2000).