Stability of $n$-th Order Flett's Points and Lagrange's Points

Authors

  • Iwona Pawlikowska Silesian University, Poland

DOI:

https://doi.org/10.5644/SJM.02.1.04

Keywords:

Hyers-Ulam stability, Flett's Mean Value Theorem, Flett's point, Lagrange's point

Abstract

In this article we show the stability of Flett's points and Lagrange's points in the sense of Hyers and Ulam.

 

2000 Mathematics Subject Classification. 39B82, 26A24, 26A06

Downloads

Download data is not yet available.

References

T. M. Flett, A mean value theorem, Math. Gaz., 42 (1958), 38–39.

S. M. Ulam, A Collection of Mathematical Problems, Interscience, New York 1960, Problems in Modern Mathematics, Science Editions, Wiley, (1964).

D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A., 27 (1941), 222–224.

M. Das, T. Riedel and P. K. Sahoo, Hyers-Ulam Stability of Flett’s points, Appl. Math. Lett., 16 (2003), 269–271.

D. H. Hyers and S. M. Ulam, On the stability of differential expressions, Math. Mag., 28 (1954), 59–64.

I. Pawlikowska, An extension of a theorem of Flett, Demonstr. Math., 32 (1999), 281–286.

R. M. Davitt, R. C. Powers, T. Riedel and P. K. Sahoo, Flett’s mean value theorem for holomorphic functions, Math. Mag., 72 (1999), 304–307.

Downloads

Published

12.06.2024

How to Cite

Pawlikowska, I. (2024). Stability of $n$-th Order Flett’s Points and Lagrange’s Points. Sarajevo Journal of Mathematics, 2(1), 41–48. https://doi.org/10.5644/SJM.02.1.04

Issue

Section

Articles