Stability of $n$-th Order Flett's Points and Lagrange's Points
DOI:
https://doi.org/10.5644/SJM.02.1.04Keywords:
Hyers-Ulam stability, Flett's Mean Value Theorem, Flett's point, Lagrange's pointAbstract
In this article we show the stability of Flett's points and Lagrange's points in the sense of Hyers and Ulam.
2000 Mathematics Subject Classification. 39B82, 26A24, 26A06
Downloads
References
T. M. Flett, A mean value theorem, Math. Gaz., 42 (1958), 38–39.
S. M. Ulam, A Collection of Mathematical Problems, Interscience, New York 1960, Problems in Modern Mathematics, Science Editions, Wiley, (1964).
D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A., 27 (1941), 222–224.
M. Das, T. Riedel and P. K. Sahoo, Hyers-Ulam Stability of Flett’s points, Appl. Math. Lett., 16 (2003), 269–271.
D. H. Hyers and S. M. Ulam, On the stability of differential expressions, Math. Mag., 28 (1954), 59–64.
I. Pawlikowska, An extension of a theorem of Flett, Demonstr. Math., 32 (1999), 281–286.
R. M. Davitt, R. C. Powers, T. Riedel and P. K. Sahoo, Flett’s mean value theorem for holomorphic functions, Math. Mag., 72 (1999), 304–307.