Semi-slant Submanifolds of Trans-Sasakian Manifolds
DOI:
https://doi.org/10.5644/SJM.02.1.09Keywords:
Semi-slant submanifold, totally umbilical submanifold, totally geodesic submanifoldAbstract
The purpose of the present paper is to study semi-slant submanifolds of a trans-Sasakian manifold.
2000 Mathematics Subject Classification. 53C40, 53B25
Downloads
References
A. Bejancu and N. Papaghiuc, Semi-invariant submanifolds of a Sasakian manifold, An. S¸tiint¸. Univ. ”Al. I. Cuza” Ia¸si Sect¸. I a Mat. (N.S.), 27 (1) (1981), 163–170.
A. Lotta, Slant submanifolds in contact geometry, Bull. Math. Soc. Roumanie, 39 (1996), 183–198.
A. Gray and L. M. Hervella, The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. Pura. Appl., 123 (4) (1980), 35–58.
B. Y. Chen and L. Vracken, Existence and Uniqueness theorem for slant immersions and its applications, Result. Math., 31 (1997), 28–39.
B. Y. Chen, Geometry of slant submanifolds, Katholieke Universiteit Leuven, Leuven, 1990.
D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics, Vol. 509, Springer-Verlag, New York, (1976).
D. Janssens, L. Vanlecke, Almost contact structure and curvature tensors, Kodai Math. J., 4 (1981), 1–27.
J. L. Cabrerizo, A. Carriazo, L. M. Fernandez and M. Fernandez, Slant submanifolds in Sasakian manifolds, Glasgow Math. J., 42 (1) (2000), 125–138.
J. L Cabrerizo A. Carriazo, L. M. Fernandez and M. Fernandez, Semi-slant submanifolds of a Sasakian manifold, Geom. Dedicata, 78 (2) (1999), 183–199.
J. A. Oubina, New classes of almost contact metric structures, Publ. Math. Debrecen, 32 (1985), 187–193.
J. C. Marrero, The local structure of trans-Sasakian manifolds, Ann. Mat. Pura Appl., 162 (4) (1992), 77–86.
N. Papaghiuc, Semi-slant submanifolds of Kaehlerian manifold, An. Stiint. Univ. Al. I. Cuza Iasi, Ser. Noua, Mat. 40 (1) (1994), 55-61.
R. S. Mishra, Almost contact metric manifolds, Monograph I, Tensor Soc. of India, Lucknow, 1991.