Asymptotic Location of the Zeros of the Faber Polynomials

Authors

  • Maurice Hasson Department of Mathematics, Bucknell University, Lewisburg, PA , USA
  • Michael Tabor Program in Applied Mathematics, The University of Arizona, Tucson, AZ, USA

DOI:

https://doi.org/10.5644/SJM.01.2.04

Keywords:

Conformal mapping, exterior angle, capacity

Abstract

Let $E$ be a compact set of the complex plane containing more than one point whose complement in the extended complex plane is simply connected. Let $\omega = \phi(z)$ map conformally Ext($E$) into $\vert\omega\vert>1$ and with $\phi(\infty)=\infty.$ The map $\phi(z)$ has the form $$\phi(z)=\frac{z}{c}+a_0+\frac{a_{-1}}{ z} +\frac{a_{-2}}{z^2}+ \cdots$$

The Faber polynomials for $E$, $\phi_n(z)$, consist of the polynomial part of $\phi(z)^n.$

For $\epsilon>0$ given let $$E_\epsilon:=\bigcup_{z\in
E}B(z,\epsilon),$$ where $B(z,\epsilon)$ denotes the disk of center $z$ and radius $\epsilon,$ and let $$B_\epsilon:=\mathrm{Br}(E_\epsilon).$$

Let
$$\alpha:=\inf_{z\in\mathrm{Br}(E)}~\left\{\theta;~\pi\theta\text{
is the exterior angle of $E$ at }z\right\}.$$ A typical result obtained in this work is the Theorem 3.2.

 

2000 Mathematics Subject Classification. 31E10, 41A10, 41A29, 41A40

Downloads

Download data is not yet available.

References

J. Bartolomeo and Matthew He, On Faber polynomials generated by an m-star, Math. Comp., 62 (205) (1994), 277–287.

J. H. Curtiss, Faber polynomials and the Faber series, Am. Math. Mon., 78 (6) (1971), 577–596.

M. Eiermann and R. S. Varga, Zeros and local extreme points of Faber polynomials associated with hypocycloid domains, Electron. Trans. Numer. Anal., 1 (1993), 49–71.

A. W. Goodman, A note on the zeros of Faber polynomials, Proc. Amer. Math. Soc., 49 (1975), 407–410.

M. Hasson and B. Walsh, Singular points of analytic functions expanded in series of Faber polynomials, Rocky Mountain J. Math., 27 (3) (1997), 817–825.

M. Hasson, Expansion of analytic functions of an operator in series of Faber polynomials, Bull. Austral. Math. Soc., 56 (2) (1997), 303–318.

M. He, Numerical results on the zeros of Faber polynomials for m-fold symmetric domains. Exploiting symmetry in applied and numerical analysis, (Fort Collins, CO, 1992), 229–240, Lectures in Appl. Math., 29, Amer. Math. Soc., Providence, RI, 1993.

M. He, The Faber polynomials for m-fold symmetric domains, J. Comput. Appl. Math., 54, (3) (1994), 313–324.

M. He, On the zeros of weighted Faber polynomials, Indian J. Math., 37 (2) (1996), 79–93.

M. He, Explicit representations of Faber polynomials for m-cusped hypocycloids, J. Approx. Theory, 87 (2) (1996) 137–147.

M. He and E. B. Saff, The zeros of Faber polynomials for an m-cusped hypocycloid, J. Approx. Theory, 78 (1994), 410–432.

P. Henrici, Applied and Computational Complex Analysis, Vol. 3, Wiley, New York, 1986.

T. K¨ovari and C. Pommerenke, On Faber polynomials and Faber expansions, Math. Z., 99 (1967), 193–206.

Arno B. J. Kuijlaars, The zeros of Faber polynomials generated by an m-star, Math. Comp., 65 (213) (1996), 151–156.

Arno B. J. Kuijlaars, Chebyshev-type quadrature and zeros of Faber polynomials, J. Comput. Appl. Math., 62 (1995), 155–179.

Arno B. J. Kuijlaars and E. B. Saff, Asymptotic distribution of the zeros of Faber polynomials, Math. Proc. Camb. Phil. Soc., 118 (1995), 437–447.

J. Liesen, On the location of the zeros of Faber polynomials, Analysis (Munich), 20 (2) (2000), 157–162.

A. Markushevich, Theory of Functions of a Complex Variable, Vol. III. Chelsea Publishing Co., New York, 1977.

V. I. Smirnov and N. A. Lebedev. Functions of a Complex Variable. The M.I.T. Press, Cambridge, 1968.

G. Szeg¨o, Uber einen Satz von A. Markoff ¨ , Math. Z., 23 (1925), 45–61.

J. L. Ullman, The location of the zeros of the derivatives of Faber polynomials, Proc. Amer. Math. Soc., 34 (1972), 422–424.

J. L. Ullman, Studies in Faber polynomials I, Trans. Amer. Math. Soc., 94 (1960), 515–528.

J. L. Ullman, Toeplitz matrices associated with a semi-infinite Laurent series, Proc. London Math. Soc., 22 (1971), 164–192.

G. Starke and R. S. Varga, A hybrid Arnoldi-Faber iterative method for nonsymmetric systems of linear equations, Numer. Math., 64 (2) (1993), 213–240.

Downloads

Published

12.06.2024

How to Cite

Hasson, M., & Tabor, M. (2024). Asymptotic Location of the Zeros of the Faber Polynomials. Sarajevo Journal of Mathematics, 1(2), 175–184. https://doi.org/10.5644/SJM.01.2.04

Issue

Section

Articles