The Kontorovich - Lebedev Transformation on Sobolev Type Spaces
DOI:
https://doi.org/10.5644/SJM.01.2.07Keywords:
Kontorovich-Lebedev transform, modified Bessel function, Sobolev spaces, Hardy inequality, Plancherel theorem, imbedding theoremAbstract
The Kontorovich-Lebedev transformation $$(KLf)(x)=\int_0^\infty
K_{i\tau}(x)f(\tau)d\tau, \;\, x \in {\mathbf R}_+$$ is considered
as an operator, which maps the weighted space $L_p(\mathbf R_+;$
$\omega(\tau)d\tau), \;\, 2 \le p \le \infty$ into the Sobolev
type space $S_p^{N, \alpha}({\mathbf R}_+)$ with the finite norm
$$||u||_{S_p^{N,\alpha}({\mathbf R}_+)}= \biggl( \sum_{k= 0}^N
\int_0^\infty |A_x^k u|^p x^{\alpha_k p -1} dx\biggr)^{1/p} <
\infty,$$
where $\alpha= (\alpha_0, \alpha_1, \dots, \alpha_N), \alpha_k \in
{\mathbf R}, k=0, \dots, N$, and $ A_x$ is the differential
operator of the form
$$A_x u= x^2u(x) - x\frac{d}{dx}\biggl[x\frac{du}{dx }\biggr], $$
and $A_x^k$ means $k$-th iterate of $A_x, \ A_x^0u= u$. Elementary properties for the space $S_p^{N, \alpha} ({\mathbf R}_+)$ are derived. Boundedness and inversion properties for the Kontorovich-Lebedev transform are studied. In the Hilbert case ($p=2$) the isomorphism between these spaces is established for the special type of weights and Plancherel's type theorem is proved.
2000 Mathematics Subject Classification. 44A15, 46E35, 26D10
Downloads
References
M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover, New York, 1972.
E. M. Dynkin and B. P. Osilenker, Weighted estimates for singular integrals and their applications, Mathematical analysis, Itogi Nauki i Tekhniki, 21 (1983), 42–129 (in Russian).
R. E. Edwards, Fourier Series II, Holt, Rinehart and Winston, New York, 1967.
B. Lisena, On the generalized Kontorovich-Lebedev transform, Rend. Mat. Appl., Ser. YII, 9 (1) (1989), 87–101.
A. P. Prudnikov, Yu. A. Brychkov and O. I. Marichev, Integrals and Series: Elementary Functions, Gordon and Breach, New York, 1986.
A. P. Prudnikov, Yu. A. Brychkov and O. I. Marichev, Integrals and Series: Special Functions, Gordon and Breach, New York, 1986.
A. P. Prudnikov, Yu. A. Brychkov and O. I. Marichev, Integrals and Series: More Special Functions, Gordon and Breach, New York, 1989.
I. N. Sneddon, The Use of Integral Transforms, McGraw-Hill, New York, 1972.
E. C. Titchmarsh, An Introduction to the Theory of Fourier Integrals, Clarendon Press, Oxford, 1937.
S. B. Yakubovich and B. Fisher, On the theory of the Kontorovich-Lebedev transformation on distributions, Proc. Amer. Math. Soc., 122 (3) (1994), 773–777.
S. B. Yakubovich, Index Transforms, World Scientific Publishing Company, Singapore, New Jersey, London and Hong Kong, 1996.
S. B. Yakubovich and J. de Graaf, On Parseval equalities and boundedness properties for Kontorovich-Lebedev type operators, Novi Sad J. Math., 29 (1) (1999), 185–205.
S. B. Yakubovich, On the integral transfomation associated with the product of gamma-functions, Port. Math., 60 (3) (2003), 337–351.
S. B. Yakubovich, On the Kontorovich-Lebedev transformation, J. Integral Equations Appl., 15 (1) (2003), 95–112.
S. B. Yakubovich, Integral transforms of the Kontorovich-Lebedev convolution type, Collect. Math., 54 (2) (2003), 99–110.
A. H. Zemanian, The Kontorovich-Lebedev transformation on distributions of compact support and its inversion, Math. Proc. Cambridge Philos. Soc., 77 (1975), 139– 143.