A Theorem on the Commutative Neutrix Product of Distributions
DOI:
https://doi.org/10.5644/SJM.01.2.08Keywords:
Distribution, Delta function, neutrix, neutrix limit, commutative neutrix productAbstract
The commutative neutrix products $f_+(x) \cdot \delta ^{(r)}(x)$ and $f_-(x)$ $\cdot \delta ^{(r)}(x) $ are evaluated for $r=0,1,2,\ldots,$ where $f$ is a function which is infinitely differentiable on an open interval containing the origin and $f_+(x) =H(x)f(x)$ and $f_-(x) =H(-x)f(x),$ $H$ denoting Heaviside's function.
2000 Mathematics Subject Classification. 46F10
Downloads
References
J. G. van der Corput, Introduction to the neutrix calculus, J. Anal. Math., 7 (1959–1960), 291–398.
B. Fisher, The product of distributions, Quart. J. Math. Oxford (2), 22 (1971), 291-298.
B. Fisher, The product of the distributions x −r− 1 2 + and x −r− 1 2 − , Proc. Cambridge Philos. Soc., 71 (1972), 123–130.
B. Fisher, The product of the distributions x −r and δ (r−1)(x), Proc. Cambridge. Philos. Soc., 72 (1972), 201–204.
B. Fisher, Some results on the product of distributions, Proc. Cambridge. Philos. Soc., 73 (1973), 317–325.
B. Fisher, The neutrix distribution product x −r + δ (r−1)(x), Studia Sci. Math. Hungar., 9 (1974), 439-441.
B. Fisher and J. D. Nicholas, Some results on the commutative neutrix product of distributions, J. Anal., 6 (1998), 33-44.
I. M. Gel’fand and G. E. Shilov, Generalized Functions, Vol. I, Academic Press, 1964.
J. D. Nicholas and B. Fisher, On the commutative neutrix product of x r−1/2 + and x −r−1/2 + , Indian J. Pure Appl. Math., 29 (12)(1998), 1235-1244.