Fixed Point Properties of Decomposable Isotone Operators in Posets

Authors

  • Maria Luigia Diviccaro Dipartimento di Costruzioni e Metodi Matematici in Architettura, Universit`a degli Studi di Napoli “Federico II”, Napoli, Italy

DOI:

https://doi.org/10.5644/SJM.01.1.01

Abstract

A known theorem of R. M. Dacić, involving increasing operators decomposable into a finite product of monotone mappings, is extended from a complete lattice to a poset by using our previous results.

 

2000 Mathematics Subject Classification. 47H10

Downloads

Download data is not yet available.

References

R.M. Daci´c, Antitone maps of partially ordered sets and their images, Rev. Roumaine Math. Pures Appl., (7) 34 (1989), 621-627.

R.M. Daci´c, Common fixed points and fixed edges for monotone mappings in posets, Colloq. Math., 58 (2) (1990), 167-174.

M.L. Diviccaro, Teoremi di punto fisso comune per famiglie di funzioni in insiemi ordinati, Riv. Mat. Univ. Parma, (4) 9 (1983), 87-93.

M.L. Diviccaro, Common fixed points of commutative antitone operators in partially ordered sets, Rad. Mat., 12 (2004), 123-128.

J. Klimes, Fixed edge theorems for complete lattices, Arch. Math., (Brno) 27 (1981), 227-234.

Downloads

Published

12.06.2024

How to Cite

Diviccaro, M. L. (2024). Fixed Point Properties of Decomposable Isotone Operators in Posets. Sarajevo Journal of Mathematics, 1(1), 3–7. https://doi.org/10.5644/SJM.01.1.01

Issue

Section

Articles