Remark on the Second Bounded Cohomology of Amalgamated Product of Groups
DOI:
https://doi.org/10.5644/SJM.01.1.05Abstract
For any cardinal number ${\mathcal M}$ we construct examples of amalgamated products and HNN extensions of groups such that the dimension of the space of second bounded cohomologies is at least ${\mathcal M}$. Also we describe the space of pseudocharacters of the group $GL(2,F_2[z]).$
2000 Mathematics Subject Classification. Primary: 20M15, 20M30, 39B82
Downloads
References
S. I. Adjan and J. Mennicke, On bounded generation of SL(n, Z), Int. J. Algebra Comput., (4) 2 (1992), 357–355.
J. Baker, The stability of the cosine equation, Proc. Amer. Math. Soc., 80 (1980), 411–416.
V. G. Bardakov, To the theory of braid groups, Mat. Sb. (6) 183 (1992), 3–43.
R. Brooks, Some remarks on bounded cohomology, In: Riemann surfaces and related topics, Ann. Math. Stud., 97 (1981), 53–63.
R. Brooks and C. Series, Bounded cohomology for surface groups, Topology, 23 (1984), 29–36.
E. W. Ellers, Products of transvections in one conjugacy class in the symplectic group over GF(3), Linear Algebra Appl., 202 (1994), 1–23.
V. A. Fa˘iziev, Pseudocharacters on free product of semigroups, Funktsional. Anal. i Prilozhen., 21 (1) (1987), 86–87.
V. A. Fa˘iziev, Pseudocharacters on free groups and some groups constructions, Uspekhi Mat. Nauk., 43 (5) (1988), 225–226.
V. A. Fa˘iziev, On the space of pseudocharacters on free product of semigroups, Mathem. Zametki, 52 (6) (1992), 126–137.
V. A. Fa˘iziev, Pseudocharacters on semidirect product of semigroups, Mathem. Zametki, (2) 53 (1993), 132–139.
V. A. Fa˘iziev, Pseudocharacters on free semigroups, Russian J. Math. Phys., (2) 5 (1995), 191–206.
V. A. Fa˘iziev, Pseudocharacters on free group, Izv. Ross. Akad. Nauk Ser. Mat., 58 (1) (1994), 121–143.
V. A. Fa˘iziev, Pseudocharacters on free semigroup, Russ. J. Math. Phys., 3 (2) (1995), 191–206.
V. A. Fa˘iziev, On almost representations of groups, Proc. Amer. Math. Soc., 127 (1) (1999), 57–61.
V. A. Fa˘iziev, Pseudocharacters on a class of extension of free groups, New York J. Math., 6 (2000), 135–152.
V. A. Fa˘iziev, Description of pseudocharacters’s space of free products of groups, Math. Inequal. Appl., 2 (2000), 269–293.
V. A. Fa˘iziev, On the stability functional equation f(xy)−f(x)−f(y) = 0 on groups, Acta. Univ. Camenianae, 69 (1) (2000), 127–135.
V. A. Fa˘iziev, On the group GL(2, Z), Electron. J. Linear Algebra, 7 (2000), 59–72.
V. A. Fa˘iziev, The problem of expressibility in some amalgamated products of groups, J. Austr. Math. Soc., 71 (1) (2001), 105–115.
V.A. Fa˘iziev and P. K. Sahoo, Pseudocharacters and the problem of expressibility for some groups, J. Algebra, 250 (2002), 603–635.
G. L. Forti, Remark 11 In: Report of the 22nd Internat. Symp. on Functional Equations, Aequationes Math., 29 (1985), 90–91.
G. L. Forti, The stability of homomorphisms and amenability, Abh. Math. Semin. Univ. Hamb., 57 (1987), 215–226.
K. Fujiwara, The second bounded cohomology of an amalgamated free product of groups, Trans. Amer. Math. Soc., 3 (2000), 1113–1129.
Z. Gajda, On stability of additive mappings, Int. J. Math. Math. Sci., 14 (1991), 431–434.
E. Ghys, Groupes d’homeomorphisms du cercle et cohomologie bornee, In: The Lefschetz centennial conference, Part III (Mexico City 1984), Contemporary Math., 58, III, Amer. Math. Soc., (1987), 81–105.
H. B. Griffiths, A note on commutators in free products, Proc. Camb. Philos. Soc., 50 (2) (1954), 178–188.
R. I. Grigorchuk, Some results on bounded cohomology, Combinatorial and Geometric group Theory, (Edinberg, 1993), 111–163, Lond. Math. Soc. Lect. Note Ser., 204, Cambridge Univ. Press, Cambridge, 1995.
R. I. Grigorchuck, Bounded cohomology of group constructions, Mat. Zametki, 59 (4) (1996), 546–550
M. Gromov, Volume and bounded cohomology, Publ. Math., IHES, 56 (1982), 5–100.
P. de la Harpe and M. Karoubi, Repres´entations approch´ees d’un groupe dans une alg´ebre de Banach, Manuscr. Math., 22 (3) (1977), 297–310.
D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA, 27 (2) (1941), 222–224.
D. H. Hyers, The stability of homomorphisms and related topics, In: Global Analysis on Manifolds (eds Th. M. Rassias), Teubner Texte Math., Leipzig, (1983), 140–153.
D. H. Hyers and S. M. Ulam, On approximate isometry, Bull. Amer. Math. Soc., 51 (1945), 228–292.
D. H. Hyers and S. M. Ulam, Approximate isometry on the space of continuous functions, Anal. Math., 48 (2) (1947), 285–289.
D. H. Hyers and Th. M. Rassias, Approximate homomorphisms, Aequationes Math., 44 (1992), 125–153.
D. H. Hyers, G. Isac and Th. M. Rassias, Topics in Nonlinear Analysis and Applications, World Scientific Publ. Co. Singapore-New Jersey-London, 1997.
D. H. Hyers, G. Isac and Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkh¨auser, Boston/Basel/Berlin, 1998.
G. Isac and Th. M. Rassias, On the Hyers–Ulam stability of ψ–additive mappings, J. Approximation Theory, 72 (1993), 131–137.
G. Isac and Th. M. Rassias, Stability of ψ–additive mappings: Applications to nonlinear analysis, Internat. J. Math. & Math. Sci., 19 (2) (1996), 219–228.
N. Ivanov, Foundation of the theory of bounded cohomology, Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova, 143 (1985), 69–109.
N. Ivanov, The second bounded cohomology group, Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova, 167 (1988), 117–120.
B. E. Johnson, Cohomology in Banach algebras, Mem. Amer. Math. Soc., 127 (1972).
D. Kazhdan, On ε-representations, Israel J. Math., 43 (4) (1982), 315–323.
R. Lyndon and P. Shupp, Combinatorial Group Theory, Springer-Verlag, BerlinHeidelberg-New York 1977.
W. Magnus, A. Karrass and D. Solitar, Combinatorial Group Theory, Dover Publications, New York 1976.
M. Newnan, Unimodular commutators, Proc. Amer. Math. Soc., 101 (4) (1987), 605–609.
S. Matsumoto, Numerical invariants for semiconjugacy of homeomorphisms, Proc. Amer. Math. Soc, 98 (1986), 163–165.
S. Matsumoto and S. Morita, Bounded cohomology of certain groups of homeomorphisms, Proc. Amer. Math. Soc., 94 (1985), 539–544.
Y. Mitsumatsu, Bounded cohomology and $ell^1$-homology of surfaces, Topology, 24 (4) (1984), 465–471.
Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297–300.
Th. M. Rassias, Problem 16, In Report of the 27th Internat. Symp. on Functional Equations, Aequationes Math., 39 (1990), 309.
Th. M. Rassias, On modified Hyers–Ulam sequence, J. Math. Anal. Appl., 158 (1991), 106–113.
A. H. Rhemtulla, A problem of expressibility in free products, Proc. Camb. Philos. Soc., 64 (3) (1968), 573–584.
A. H. Rhemtulla, Commutators of certain finitely generated solvable groups, Can. J. Math., 64 (5) (1969), 1160–1164.
S. M. Ulam, A Collection of Mathematical Problems, Interscience Publ, New York 1960.