A Distributional Version of the Ferenc Lukács Theorem

Authors

  • Ricardo Estrada Department of Mathematics, Louisana State University, Baton Rouge, Louisiana, USA

DOI:

https://doi.org/10.5644/SJM.01.1.08

Keywords:

Distributions, Fourier series, conjugate series, theorem of Ferenc Lukács

Abstract

The theorem of F. Lukács determines the generalized jumps of a periodic, integrable function in terms of a logarithmic average of the partial sums of its conjugate Fourier series. Recently, F. Móricz gave a version of Lukács result for the Abel-Poisson means of the conjugate Fourier series, under an extended notion of jump. In this article we give a generalization that applies to periodic distributions under a much extended notion of jump, namely, that of distributional point values of Łojasiewicz. Our generalization is obtained by obtaining results on the local boundary behaviour of an analytic function with distributional boundary values near a point where the boundary generalized function has a jump.

 

2000 Mathematics Subject Classification. 42A50, 46F10, 42A16

Downloads

Download data is not yet available.

References

E. J. Beltrami and M. R. Wohlers, Distributions and the Boundary Values of Analytic Functions, Academic Press, New York, 1966.

H. Bremermann, Distributions, Complex Variables and Fourier Transforms, AddisonWesley, Reading, Massachusetts, 1965.

R. Estrada, Characterization of the Fourier series of distributions having a value at a point, Proc. Amer. Math. Soc., 124 (1996), 1205–1212.

R. Estrada, The Ces`aro behaviour of distributions, Proc. Roy. Soc. London Ser. A, 454 (1998), 2425–2443.

R. Estrada, Abel summability and angular convergence, Scientia, 9 (2003), 45–51.

R. Estrada and R. P. Kanwal, Distributional boundary values of analytic and harmonic functions, J. Math. Anal. Appl., 89 (1982), 262–289.

R. Estrada and R. P. Kanwal, A Distributional Approach to Asymptotics. Theory and Applications, Second edition, Birkh¨auser, Boston, 2002.

L. Fej´er, Uber die Bestimmung des Sprunges der Funktion aus ihrer Fourierreihe, J. Reine Angew. Math., 142 (1913), 165–188. See also the Collected Works of L. Fej´er: Gesammelte Arbeiten, Akad´emiai Kiad´o, Budapest, 1970, pp. 718–744.

A. Grossman, G. Loupias and E. M. Stein, An algebra of pseudodifferential operators and Quantum Mechanics in phase space, Ann. Inst. Fourier, 18 (1968), 343–368.

J. Horv´ath, Topological Vector Spaces and Distributions, Vol.I., Addison-Wesley, Reading, Massachusetts, 1966.

R. P. Kanwal, Generalized Functions: Theory and Technique, Second Edition, Birkh¨auser, Boston, 1998.

S. Lojasiewicz, Sur la valeur et la limite d’une distribution en un point, Studia Math., 16 (1957), 1–36.

F. Luk´acs, Uber die Bestimmung des Sprunges einer Funktion aus ihrer Fourierreihe, J. Reine Angew. Math., 150 (1920), 107–112.

F. M´oricz, Ferenc Luk´acs type theorems in terms of the Abel-Poisson mean of conjugate series, Proc. Amer. Math. Soc., 131 (2003), 1243–1250.

S. Pilipovi´c, B. Stankovi´c and A. Takaˇci, Asymptotic Behaviour and Stieltjes Transformation of Distributions, Teubner-Texte zuer Mathematik, Leipzig, 1990.

L. Schwartz, Th´eorie des Distributions, Hermann, Paris, 1966.

E. C. Titchmarsh, The Theory of Functions, Second edition, Oxford University Press, Oxford, 1979.

V. S. Vladimirov, Y. N. Drozhinov and B. I. Zavyalov, Multidimensional Tauberian Theorems for Generalized Functions, Nauka, Moscow, 1986.

G. Walter, Local boundary behavior of harmonic functions, Illinois J. Math., 16 (1972), 491–501.

A. H. Zemanian, Generalized Integral Transforms, Interscience, New York, 1965.

A. Zygmund, Trigonometric Series, Third edition, Cambridge University Press, Cambridge, 2002.

Downloads

Published

12.06.2024

How to Cite

Estrada, R. (2024). A Distributional Version of the Ferenc Lukács Theorem. Sarajevo Journal of Mathematics, 1(1), 75–92. https://doi.org/10.5644/SJM.01.1.08

Issue

Section

Articles