A Generalization of Meir-Keeler Type Common Fixed Point Theorem For Four Noncontinuous Mappings
DOI:
https://doi.org/10.5644/SJM.01.1.12Keywords:
Fixed point, compatible mappings, weakly compatible mappings, implicit relationAbstract
In this paper, using a combination of methods used in [1], [20] and [22] the results from [3, Theorem 1], [14, Theorem 1] and [15, Theorem 1] are improved removing the assumption of continuity, relaxing compatibility to the weak compatibility property and replacing the completeness of the space with a set of four alternative conditions for four functions satisfying an implicit relation.
2000 Mathematics Subject Classification. 54H25
Downloads
References
M. Imdad, A. S. Kumar and M. S. Khan, Remarks on some fixed point theorem satisfying implicit relations, Rad. Mat., 11 (2002),135–143.
J. Jachymski, Common fixed point theorems for some families of mappings, Indian J. Pure Appl. Math., 25 (1994), 925–937.
K. Jha, R. P. Pant and S. L. Singh, Common fixed points for compatible mappings in metric spaces, Rad. Mat., 12 (2003), 107–114.
G. Jungck, Compatible mappings and common fixed points, Internat. J. Math. Math. Sci., 9 (1986), 771–778.
G. Jungck, Common fixed points for non–continuous nonself mappings on non–numeric spaces, Far East J. Math. Sci., 4 (2) (1996), 192–212.
G. Jungck, P. P. Murthy and Y. J. Cho, Compatible mappings of type (A) and common fixed points, Math. Japonica, 36 (1993), 381–390.
M. Maiti and T. K. Pal, Generalizations of two fixed point theorems, Bull. Calcutta Math. Soc., 70 (1978), 57–61.
A. Meir and E. Keeler, A theorem on contraction mappings, J. Math. Anal. Appl., 28 (1969), 326–329.
R. P. Pant, Common fixed points of two pairs of commuting mappings, Indian J. Pure Appl. Math., 17 (2) (1986), 187–192.
R. P. Pant, Common fixed point of weakly commuting mappings, Math. Student, 62, 1–4 (1993), 97–102.
R. P. Pant, Common fixed points for non-commuting mappings, J. Math. Anal. Appl., 188 (1994), 436–440.
R. P. Pant, Common fixed points for four mappings, Bull. Calcutta Math. Soc., 9 (1998), 281–286.
R. P. Pant, Common fixed point theorems for contractive maps, J. Math. Anal. Appl., 226 (1998), 251–258.
R. P. Pant and K. Jha, A generalization of Meir-Keeler type common fixed point theorem for four mappings, J. Natural and Physical Sciences, 16 (1–2) (2002), 77–84.
R. P. Pant and K. Jha, A generalization of Meir-Keeler type fixed point theorem for four mappings, Ultra-Science, 15 (1) M (2003), 97–102.
S. Park nd B. E. Rhoades, Meir-Keeler type contractive conditions, Math. Japonica, 26 (1) (1981), 13–20.
H. K. Patak and M. S. Khan, Compatible mappings of type (B) and common fixed point theorems of Gregus type, Czechoslovak Math. J., 45 (20) (1995), 685–698.
H. K. Pathak, Y. J. Cho, S. M. Kang and B. S. Lee, Fixed point theorems for compatible mappings of type (P) and applications to dynamic programming, Le Matematiche, Fasc. I, 50 (1995), 15–23.
V. Popa, Some fixed point theorems for weakly compatible mappings, Rad. Mat., 10 (2001), 245–252.
V. Popa, Coincidence and fixed point theorems for noncontinuous hybrid contractions, Nonlinear Analysis Forum, 7 (1) (2002), 153–158.
J. H. N. Rao and K. P. R. Rao, Generalizations of fixed point theorems of Meir and Keeler type, Indian J. Pure Appl. Math., 16 (1) (1985), 1249–1262.
S. L. Singh and S. N. Mishra, Remarks on recent fixed point theorems and applications to integral equations, Demonstratio Math., 24 (2001), 847–857.