Equivalence of K-Functionals and Modulus of Smoothness Generated by The $ q $-Rubin Operator
DOI:
https://doi.org/10.5644/SJM.15.01.05Keywords:
q2-analogue differential Operator, q-Rubin transform, q- translation Operator, K-functionals, Modulus of SmoothnessAbstract
In this paper, the equivalence between K-functionals and modulus of smoothness tied to a $ q $-Rubin operator was studied.
Downloads
References
R. P. Agarwal, M. Meehan and D. O'Regan, Fixed Point Theory and Applications, Cambridge Univ. Press, United Kingdom, 2001.
P. L. Butzer, H. Behrens, Semi-groups of operators and approximation, Springer, Berlin, Heidelbarg, New York, 1967.}
M. M. Chaffar, N. Bettaibi, A. Fitouhi, Sobolev Type Spaces Associated With The q-Rubin's Operator, LE Matematiche, Fasc. I, pp. 37-56 (2014).}
R. W. Corley, Some hybrid fixed point theorems related to optimization, J. Math. Anal. Appl., 120 (1980), 528--532.
F. H. Jackson, On a q-Definite Integrals, Q. J. Pure Appl. Math. 41, 193-203 (1910).}
Peetre J, A theory of interpolation of normed spaces, Notas Mat. 39 (1963, 1968).
M. Imdad, A. Ahmad and S. Kumar, On nonlinear nonself hybrid contractions, Rad. Mat., 10 (2) (2001), 233--244.
R. L. Rubin, A $ q^{2}-$Analogue Operator for $ q^{2}-$analogue Fourier Analysis, J. Math. Analys. Appl. 212 , 571-582 (1997).
R. L. Rubin, Duhamel Solutions of non-Homogenous $ q^{2}-$analogue Wave Equations, Proc. of Amer. Math.Soc. V 135 (3), 777-785 (2007).