Equivalence of K-Functionals and Modulus of Smoothness Generated by The $ q $-Rubin Operator

Authors

  • Sami Rebhi

DOI:

https://doi.org/10.5644/SJM.15.01.05

Keywords:

q2-analogue differential Operator, q-Rubin transform, q- translation Operator, K-functionals, Modulus of Smoothness

Abstract

In this paper, the equivalence between K-functionals and modulus of smoothness tied to a $ q $-Rubin operator was studied.

Downloads

Download data is not yet available.

References

R. P. Agarwal, M. Meehan and D. O'Regan, Fixed Point Theory and Applications, Cambridge Univ. Press, United Kingdom, 2001.

P. L. Butzer, H. Behrens, Semi-groups of operators and approximation, Springer, Berlin, Heidelbarg, New York, 1967.}

M. M. Chaffar, N. Bettaibi, A. Fitouhi, Sobolev Type Spaces Associated With The q-Rubin's Operator, LE Matematiche, Fasc. I, pp. 37-56 (2014).}

R. W. Corley, Some hybrid fixed point theorems related to optimization, J. Math. Anal. Appl., 120 (1980), 528--532.

F. H. Jackson, On a q-Definite Integrals, Q. J. Pure Appl. Math. 41, 193-203 (1910).}

Peetre J, A theory of interpolation of normed spaces, Notas Mat. 39 (1963, 1968).

M. Imdad, A. Ahmad and S. Kumar, On nonlinear nonself hybrid contractions, Rad. Mat., 10 (2) (2001), 233--244.

R. L. Rubin, A $ q^{2}-$Analogue Operator for $ q^{2}-$analogue Fourier Analysis, J. Math. Analys. Appl. 212 , 571-582 (1997).

R. L. Rubin, Duhamel Solutions of non-Homogenous $ q^{2}-$analogue Wave Equations, Proc. of Amer. Math.Soc. V 135 (3), 777-785 (2007).

Downloads

Published

07.03.2022

How to Cite

Rebhi, S. . (2022). Equivalence of K-Functionals and Modulus of Smoothness Generated by The $ q $-Rubin Operator. Sarajevo Journal of Mathematics, 15(1), 49–56. https://doi.org/10.5644/SJM.15.01.05

Issue

Section

Articles