Further Development on Krasner-Vuković Paragraded Structures and $p$-adic Interpolation of Yubo Jin $L$-values

Authors

  • Alexei Panchishkin

DOI:

https://doi.org/10.5644/SJM.20.01.03

Abstract

This paper is a joint project with Siegfried Bocherer (Mannheim), developing a recent preprint of  Yubo Jin (Durham UK) previous works of Anh Tuan Do (Vietnam)  and Dubrovnik, IUC-2016 papers from \textit{Sarajevo Journal of Mathematics} (Vol.12, No.2-Suppl., 2016). We wish to use paragraded structures on {differential operators and arithmetical automorphic forms on classical groups and show that these structures provide a tool to construct $p$-adic measures and $p$-adic $L$-functions on the corresponding non-archimedean weight spaces.}   An approach to constructions of automorphic $L$-functions on unitary groups and their $p$-adic analogues is presented. For an algebraic group $G$ over a number field $K$ these $L$ functions are  certain Euler products  $L(s,\pi, r, \chi)$.  In particular, our constructions cover the $L$-functions in \cite{Shi00} via the doubling method of Piatetski-Shapiro and Rallis.  A $p$-adic analogue of $L(s,\pi, r, \chi)$ is a $p$-adic analytic function  $L_p(s,\pi, r, \chi)$ of $p$-adic arguments $s  \in \Z_p$, $\chi \bmod p^r$ which interpolates algebraic numbers  defined through the normalized critical values $L^*(s,\pi,r, \chi)$ of the corresponding complex analytic  $L$-function. We present a method using arithmetic nearly-holomorphic forms and general quasi-modular forms, related to algebraic automorphic forms. It gives a technique of constructing $p$-adic zeta-functions via general quasi-modular forms and their Fourier coefficients.

Downloads

Download data is not yet available.

References

Amice, Y., Les nombres p-adiques, 1975, PUF, Collection SUP, p.189.

Amice, Y. and V´elu, J., Distributions p-adiques associ´ees aux s´eries de Hecke, Journ´ees Arithm´etiques de Bordeaux (Conf. Univ. Bordeaux, 1974), Ast´erisque no. 24/25, Soc. Math. France, Paris 1975, pp. 119-131

Bo¨cherer, S., Uber die Funktionalgleichung automorpher L–Funktionen zur Siegelscher Modulgruppe. J. reine angew. Math. 362 (1985) 146-168

Boecherer, Siegfried, Nagaoka, Shoyu , On p-adic properties of Siegel modular forms, in: Automorphic Forms. Research in Number Theory from Oman. Springer Proceedings in Mathematics and Statistics 115. Springer 2014, see also arXiv:1305.0604 [math.NT]

B¨ocherer, S., Panchishkin, A.A., p-adic Interpolation of Triple L-functions: Analytic Aspects. In: Automorphic Forms and L-functions II: Local Aspects – David Ginzburg, Erez Lapid, and David Soudry, Editors, AMS, BIU, 2009, 313 pp.; pp.1-41

B¨ocherer, S., Panchishkin, A.A., Higher Twists and Higher Gauss Sums. Vietnam Journal of Mathematics 39:3 (2011) 309-326

B¨ocherer, S., Manuscript, Grenoble, (December 2023).

Athanasis Bouganis, Manuscript, Grenoble, (December 2023).

N. Bourbaki, Alg`ebre, Chap. I, 2`em et 3`em ´edit., Herman, Paris, 1962.

B¨ocherer, S., and Schmidt, C.-G., p-adic measures attached to Siegel modular forms, Ann. Inst. Fourier 50, N◦5, 1375-1443 (2000).

Courtieu,M., Panchishkin , A.A., Non-Archimedean L-Functions and Arithmetical Siegel Modular Forms, Lecture Notes in Mathematics 1471, Springer-Verlag, 2004 (2nd augmented ed.)

Do, Anh Tuan, p-Adic Admissible Measures Attached to Stegel Modular Forms of Arbitrary Genus, Vietnam Journal of Mathematics December 2017, Volume 45, Issue 4, pp 695-711.

Eischen, Ellen E., p-adic Differential Operators on Automorphic Forms on Unitary Groups. Annales de l’Institut Fourier 62, No.1 (2012) 177-243.

Eischen Ellen E., Harris, Michael, Li, Jian-Shu, Skinner, Christopher M., p-adic Lfunctions for unitary groups, arXiv:1602.01776v3 [math.NT]

Gelbart, S., and Shahidi, F., Analytic Properties of Automorphic L-functions, Academic Press, New York, 1988.

Gelbart S.,Piatetski-Shapiro I.I., Rallis S. Explicit constructions of automorphic Lfunctions. Springer-Verlag, Lect. Notes in Math. N 1254 (1987) 152p.

Katz, N.M., p-adic interpolation of real analytic Eisenstein series. Ann. of Math. 104 (1976) 459–571

Kikuta, Toshiyuki, Nagaoka, Shoyu, Note on mod p property of Hermitian modular forms arXiv:1601.03506 [math.NT]

Koblitz, Neal, p-adic Analysis. A Short Course on Recent Work, Cambridge Univ. Press, 1980

Krasner, M., Prolongemcnt analytique uniforme et multiforme, Collogue C.N.R.,S. n◦143, Clermont-Ferrand, 1963, Paris, Ed. C.N.R.S., 1966, p. 97-141

Krasner, M., Rapport sur le prologement analytique dans les corps values compl`etes par la m´ethode des ´el´ements analytiques quasiconnexes, Bull. Soc. Math. France, Mem. 39-40 (1974) 131-254.

Krasner, M., Anneaux gradu´es g´en´eraux, Colloque d’Alg`ebre de Rennes (1980), 209-308.

Krasner, M., Kaloujnine, L. Produit complet des groupes de permutations et probl`eme d’extension de groupes II , Acta Sci. Math. Szeged , 14 (1951) p. 39-66 et 69-82.

Krasner, M., Vukovi´c, M. Structures paragradu´ees (groupes, anneaux, modules), Queen’s Papers in Pure and Applied Mathematics, 77, Queen’s University, Kingston, Ontario, Canada, 1987.

Lang, Serge. Introduction to modular forms. With appendixes by D. Zagier and Walter Feit. Springer-Verlag, Berlin, 1995

Mazur B., Tate J., Teitelbaum J., On p-adic analogues of the conjectures of Birch and Swinnerton-Dyer, Invent. Math. 84, no. 1, 1-48, 1986.

Manin, Yu. I., Panchishkin, A.A., Arnab Saha, https://www-fourier.ujf-grenoble.fr/panchish/prism/

Manin, Tu. I., Panchishkin, A.A., Introduction to Modern Number Theory: Pundamental Problems, Ideas and Theories (Encyclopaedia of Mathematical Sciences), Second Edition, 504 p., Springer (2005).

Panchishkin, A.A., Motives over totally real fields and p-adic L-functions, Ann. Inst. Fourier (Grenoble) 44 (1994), no. 4, 989-1023.

Panchishkin, A.A., A new method of constructing p-adic L-functions associated with modular forms, Moscow Mathematical Journal, 2 (2002), Number 2, 1-16.

Panchishkin, A.A., Two variable p-adic L functions offached fo eigenfamilies of positive slope, Invent. Math. v. 154, N3 (2003), pp. 551 - 615.

Panchishkin, A.A., A motivic approach to Shimura’s zeta functioms ond oftached p-adic L-functions via admissible measures, RIMS conference ”Automorphic forms, automorphic representations and related topics” (January 21-25, 2019), Kˆokyˆuroku No. 2136

RIMS (Kyoto) 2020.

Panchishkin, A.A., Algebraic differentiol operaiors on unitary groups and their applications.

https://archive.mpimbonn.mpg.de/id/eprint/4579/1/mpim-preprint 2021-22.pdf Panchishkin, A.A., New approaches to constructing p-adic L-functions on classical

groups, algebraic differential operators, and BGG.

https://archive. mpimbonn.mpg.de/id/eprint/4580/1/mpim-preprint 2021-23.pdf

Panchishkin, A.A., Algebraic differential operators on arithmetical automorphic forms,

modular distributions, p-adic interpolation of their critical values via BGG modulas, J.

Math. Math. Sci. (2022, 1), 1-26.

Serre, J.–P., Formes modulaires et fonctions zˆeta p-adiques, Lect Notes in Math. 350

(1973) 191–268 (Springer Verlag).

Shimura G., Arithmeticity in the theory of automorphic forms, Mathematical Surveys

and Monographs, vol. 82 (Amer. Math. Soc., Providence, 2000).

Skinner, C. and Urban, E. The Iwasawa Main Cconjecture for GL(2).

http://www.math.jussieu.fr/˜urban/eurp/MC.pdf

Vukovi´c, M. Structures gradu´es et paragradu´es, Pr´epublication de l’Institut Fourier no

(2001).

https://www-fourier.ujf-grenoble.fr/sites/default/files/ref 536.pdf

Vukovi´c, M. Theory of Groups and its Representations with Applications in Physics,

Sarajevo Publishing and Prirodno-matematiˇcki fakultet, Sarajevo (2003), pp. 384.

M.Vukovi´c, From Krasner’s corpoid and Bourbaki’s graduations to Krasner’s graduations

and Krasner-Vukovi´c’s paragraduations, Sarajevo J. Math. Vol. 14 (27), No. 2

(2018), 175-190.

M.Vukovi´c, Radicals of Paragraded Rings (dedicated to A.V. Mikhalev), Springer’s J.

Math. Sci., Vol. 275, No. 4, 379-392 (2023).

M.Vukovi´c, Brown-McCoy and large Brown-McCoy radicals of paragraded rings (to

appear soon)

M.Vukovi´c, Panoramic view of graded structures from Euler and Bourbaki-Krasner to

Krasner - Vukovi´c (in Fundam. Prikl. Mat. (in russian) 2023, T.24, No. 3, p. 23-37 it

will appear in Springer’s J. Math. Sci. in english).

Yoshida, H., Review on Goro Shimura, Arithmeticity in the theory of automorphic forms

Bulletin (New Series) of the AMS, vol. 39, N3 (2002), 441-448.

Yubo Jin, On p-adic measures for quaternionic modular forms-1.

http://arxiv.org/abs/2209.11822v1, (23 Sep 2022)

Yubo Jin, Algebraicity and the p-adic interpolation of special L-values for certain classical

groups. http://arxiv.org/abs/2305.19113v1 (30 May 2023)

Yubo Jin, On p-adic measures for quaternionic modular forms-2.

http://arxiv.org/abs/2209.11822v2 (31 May 2023)

Yubo Jin, Manuscript, Grenoble, (December 2023).

Zemel,S., On quasimodular forms, almost holomorphic modular forms, and the vectorvalued

modular forms of Shimura. arXiv:1307.1997 (2013)

Downloads

Published

02.08.2024

How to Cite

Panchishkin, A. (2024). Further Development on Krasner-Vuković Paragraded Structures and $p$-adic Interpolation of Yubo Jin $L$-values . Sarajevo Journal of Mathematics, 20(1), 13–23. https://doi.org/10.5644/SJM.20.01.03

Issue

Section

Articles