Linear maps preserving the Cullis determinant of $(n+1)\times n$ matrices
DOI:
https://doi.org/10.5644/SJM.20.01.05Keywords:
Cullis determinant, Linear preservers, Rectangular matricesAbstract
In this paper we give an explicit description of linear maps preserving the Cullis determinant of rectangular matrices of the size $(n+1)\times n.$ Unlike the result about the ordinary determinant, it appears that linear preservers of Cullis determinant can be singular. We provide the corresponding examples and characterize the case when these maps are non-singular.
Downloads
References
Amiri, A., Fathy, M., & Bayat, M. (2010). Generalization of some determinantal identities for nonsquare matrices based on Radic’s definition. TWMS Journal of Pure and Applied Mathematics, 1(2), 163–175.
Cullis, C. E. (1913). Matrices and Determinoids: Volume 1. Number v. 1 in Calcutta University Readership Lectures. Cambridge University Press.
Dieudonné, J. (1948). Sur une généralisation du groupe orthogonal à quatre variables. Archiv der Mathematik, 1(4), 282–287.
Frobenius, G. (2022). Über die Darstellung der endlichen Gruppen durch lineare Substitutionen. Königliche Gesellschaft der Wissenschaften.
Nakagami, Y., & Yanai, H. (2007). On Cullis’ determinant for rectangular matrices. Linear Algebra and its Applications, 422(2), 422–441.
Makarewicz, A., & Pikuta, P. (2020). Determinant of a rectangular matrix which has a number of identical columns. Annales Universitatis Mariae Curie-Skłodowska, Sectio A, 74, 41–60.
Makarewicz, A., Pikuta, P., & Szałkowski, D. (2014). Properties of the determinant of a rectangular matrix. Annales Universitatis Mariae Curie-Skłodowska, Sectio A, 68(1), 31–41.
Marcus, M., & Moyls, B. (1959). Linear transformations on algebras of matrices. Canadian Journal of Mathematics, 11, 61–66.
Pierce, S., et al. (1992). A survey of linear preserver problems. Linear and Multilinear Algebra, 33(1-2).
Pyle, H. R. (1962). Non-square determinants and multilinear vectors. Mathematics Magazine, 35(2), 65–69.
Radić, M. (1966). A definition of the determinant of a rectangular matrix. Glasnik Matematicki, Serija III, 1(21), 17–22.
Sudhir, A. P. (2014). On the determinant-like function and the vector determinant. Advances in Applied Clifford Algebras, 24(3), 805–807.
Yanai, H., Takane, Y., & Ishii, H. (2006). Nonnegative determinant of a rectangular matrix: Its definition and applications to multivariate analysis. Linear Algebra and its Applications, 417(1), 259–274.