On Invariant Hypercomplex Structures on Homogeneous Spaces

Authors

  • Svjetlana Terzić University of Montenegro, Faculty of Science and Mathematics, Podgorica, Montenegro

DOI:

https://doi.org/10.5644/SJM.20.01.08

Keywords:

hypercomplex structures, homogeneous spaces

Abstract

An existence of invariant hypercomplex structure on compact homogeneous spaces implies strong restrictions on their root structure and consequently on their characteristic Pontrjagin classes and the corresponding Chern classes. We describe these constraints by making use of Lie theory.

2010 Mathematics Subject Classification. Primary: 22F30, 32Q60, Secondary: 22E60, 57R20.

Downloads

Download data is not yet available.

References

R. P. Agarwal, M. Meehan and D. O’Regan, Fixed Point Theory and Applications, Cambridge Univ. Press, United Kingdom, 2001.

D. V. Alekseevsky and S. Marchiafava, Hypercomplex structures on quaternionic manifolds, New Developments in Differential Geometry Proceedings of the Colloquium on Differential Geometry, Debrecen, SpringerLink, (1994), 1-19.

A. Borel, Sur la cohomologie des espaces fibres principaux et des espaces homogenes de groupes de Lie compacts, Ann. Math. 57 (1953), 115–207.

A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces I & II, American Journal of Mathematics 80, (1958), 459-538 and 81, (1959), 315–382. 459–538.

V. Cortes and K. Hasegawa, The quaternionic/hypercomplex-correspondence, Osaka J. Math. 58, (2021), 213-238.

H. Hopf and H. Samelson, Ein Satzuber die Wirkungsraume geschlossener Liescher Gruppen, Comment. Math. Helv. 13, (1941), 240–251

D. Joyce, Compact quaternionic and hypercomplex manifolds, Journal of Differential Geometry, 35, ( 1992), 743 - 761.

D. Kaledin, Integrability of the twistor space for a hypercomplex manifold, Selecta Mathematica, 4, Iss , (1998), 271 - 278.

M. Obata, Affine connections on manifolds with almost complex, quaternion or Hermitian structure, Japanese Journal of Mathematics 26, ( 1956), 43-79.

A. L. Onishchik, Topologiya tranzitivnykh grupp preobrazovanii, (Russian) Fizmatlit “Nauka”, Moscow, 1995.

A. L. Onishchik and E. B. Vinberg, Seminar po gruppam Li i algebraicheskim gruppam, (Russian) URSS, Moscow, 1995.

H. Pedersen, Y. S. Poon and A. W. Swann, Hypercomplex structures associated to quaternionic manifolds, Difterential Geometry and its Applications, 9, (1998), 273-293.

H. Samelson, A class of complex-analytic manifolds, Portugal. Math. 12, (1953), 129-132.

Ph. Spindel, A. Sevrin, W. Troost, A. Van Proeyen, Extended super-symmetric σ- models on group manifolds, Nuclear Phys. B, 308, (1988), 662-698.

M. Takeuchi, On Pontrjagin classes of compact symmetric spaces, J. Fac. Sci. Univ. Tokyo Sec. I, 9, (1962), 313-328.

S. Terzić, Cohomology with real coefficients of generalized symmetric spaces, Fundamentalnaya i Prikladnaya Matematika, 7, Iss 1, (2001), 131–157.

S. Terzić, Pontryagin Classes of Generalized Symmetric Spaces, Matematicheskie Zametki, 69, Iss 4, (2001), 613–621.

A. Tomberg, Twistor spaces of hypercomplex manifolds are balanced, Adv. Math. 280, (2015), 282 - 300.

H.-C. Wang, Closed manifolds with homogeneous complex structure, Amer. J. Math. 76, (1954), 1-32.

Downloads

Published

02.08.2024

How to Cite

Terzić, S. (2024). On Invariant Hypercomplex Structures on Homogeneous Spaces. Sarajevo Journal of Mathematics, 20(1), 87–93. https://doi.org/10.5644/SJM.20.01.08

Issue

Section

Articles