$\mathcal{I}_{2}$-Asymptotically Lacunary Statistical Equivalence of Weight $g$ of Double Sequences of Sets

Authors

  • Ömer Kişi

DOI:

https://doi.org/10.5644/SJM.15.01.06

Keywords:

Asymptotic equivalence, Sequences of sets, I2-convergence

Abstract

In this paper, our aim is to introduce new notions, namely, Wijsman asymptotically $\mathcal{I}_{2}$-statistical equivalence of weight $g$, Wijsman strongly asymptotically $\mathcal{I}_{2}$-lacunary equivalence of weight $g$ and Wijsman asymptotically $\mathcal{I}_{2}$-lacunary statistical equivalence of weight $g$ of double set sequences. We mainly investigate their relationship and also make some observations about these classes.

Downloads

Download data is not yet available.

References

M. Balcerzak, P. Das, M. Filipczak and J. Swaczyna, Generalized kinds of density and the associated ideals, Acta Math. Hungar., 147 (2015), 97--115.

C. Belen, M. Yıldırım, On generalized statistical convergence of double sequences via ideals, Ann. Univ. Ferrara, 58 (1) (2012), 11--20.

C. Çakan, B. Altay, Statistically boundedness and statistical core of double sequences, J. Math. Anal. Appl., 317 (2006), 690--697.

P. Das, P. Kostyrko, W. Wilczyński and P. Malik, $mathcal{I}$ and $mathcal{I}^{ast }$ -convergence of double sequences, Math. Slovaca, 58 (5) (2008), 605--620.

P. Das, E. Savaş and S.K. Ghosal, On generalizations of certain summability methods using ideals, Appl. Math. Lett., 24 (2011), 1509--1514.

H. Fast, Sur la convergence statistique, Colloq. Math., 2 (1951), 241--244.

J.A. Fridy, C. Orhan, Lacunary Statistical Convergence, Pacific J. Math., 160 (1) (1993), 43--51.

Ö. Kişi, F. Nuray, New Convergence Definitions for Sequences of Sets, Abstr. Appl. Anal., Volume 2013, Article ID 852796, 6 pages. http://dx.doi.org/10.1155/2013/852796.

Ö. Kişi, E. Savaş, F. Nuray, $mathcal{I}$textit{-asymptotically lacunary statistical equivalence of sequences of sets, J. Inequal. Appl., submitted.

Ö. Kişi, On Wijsman $mathcal{I}_{2}$ -lacunary statistical convergence for double set sequences, Fasc. Math., 57 (1) (2016), 91--104.

P. Kostyrko, T. Šalát and W. Wilczyński, $mathcal{I}$textit{-Convergence, Real Anal. Exchange, 26 (2) (2000), 669--686.

S. Kumar, V. Kumar and S.S. Bhatia, On ideal version of lacunary statistical convergence of double sequences, Gen. Math. Notes, 17 (1) (2013), 32--44.

M. Marouf, Asymptotic equivalence and summability, Internat. J. Math. Sci., 16 (4) (1993), 755--762.

M. Mursaleen, O. H. H. Edely, Statistical convergence of double sequences, J. Math. Anal. Appl., 288 (2003), 223--231.

F. Nuray, B.E. Rhoades, Statistical convergence of sequences of sets, Fasc. Math., 49 (2012), 87--99.

F. Nuray, E. Dündar and U. Ulusu, Wijsman statistical convergence of double sequences of sets, (under communication).

R.F. Patterson, E. Savaş, On asymptotically lacunary statistical equivalent sequences, Thai J. Math. 4 (2) (2006), 267--272.

I. P. Pobyvanets, Asymptotic equivalence of some linear transformations defined by a nonnegative matrix and reduced to generalized equivalence in the sense of Cesáro and Abel, Mat. Fiz., 28 (1980), 83—87.

R.F. Patterson, On asymptotically statistically equivalent sequences, Demonstr. Math., 36 (1) (2006), 149--153.

E. Savaş, On $mathcal{I}$ -asymptotically lacunary statistical equivalent sequences, Adv. Difference Equ., 111 (2013), doi:10.1186/1687-1847-2013-111.

E. Savaş, On $mathcal{I}$ -Lacunary Double Statistical Convergence of Weight $g$, Commun. Math. Appl., 8 (2) (2017), 27--137.

E. Savaş, R.F. Patterson, Lacunary statistical convergence of double sequences, Math. Commun. 10 (2005), 55--61.

B.C. Tripathy, B. Hazarika and B. Choudhary, Lacunary $mathcal{I}$ -convergent sequences, Kyungpook Math. J., 52 (4) (2012), 473--482.

U. Ulusu, F. Nuray, Lacunary statistical convergence of sequence of sets, Prog. App. Math., 4 (2) (2012), 99--109.

U. Ulusu, F. Nuray, On asymptotically lacunary statistically equivalent set sequences}, J. Math., (2013), Article ID 310438, 5 pages.

U. Ulusu, E. Dündar, $mathcal{I}$-Lacunary statistical convergence of sequences of sets, Filomat, 28 (8) (2014), 1567--1574.

U. Ulusu, E. Dündar, Asymptotically $mathcal{I}_{2}$-Lacunary statistical equivalence of double sequences of sets, J. Inequal. Spec. Funct., 7 (2) (2016), 44--56.

Downloads

Published

07.03.2022

How to Cite

Kişi, Ömer . (2022). $\mathcal{I}_{2}$-Asymptotically Lacunary Statistical Equivalence of Weight $g$ of Double Sequences of Sets. Sarajevo Journal of Mathematics, 15(1), 57–66. https://doi.org/10.5644/SJM.15.01.06

Issue

Section

Articles