Dessins D’Enfants on Reducible Surfaces
DOI:
https://doi.org/10.5644/SJM.20.01.07Keywords:
dessins d'enfants, Belyi pairs, Fried pairs, reducible curvesAbstract
In this paper we introduce dessins d'enfants on unions of surfaces, possibly glued. We show why they are natural, discuss their relations with Belyi pairs on reducible curves and provide some examples. In particular, we provide an example of a Fried pair which degenerates to a dessin on a reducible and singular curve.
Downloads
References
Adrianov, N. M., Kochetkov, Yu. Yu., Shabat, G. B., & Suvorov, A. D. (1995). Plane trees and Mathieu groups. Fundamental’naya i Prikladnaya Matematika, 1(2), 377–384 [in Russian].
Adrianov, N., Pakovich, F., & Zvonkin, A. (2020). Davenport — Zannier Polynomials and Weighted Trees. Mathematical Surveys and Monographs, 249. American Mathematical Society.
Adrianov, N. M., & Shabat, G. B. (2022). Calculating complete lists of Belyi pairs. Mathematics, 10(2), 258.
Amburg, N. Ya. (2004). Symmetries of graphs on surfaces and algebraic curves. Ph.D. Thesis, Moscow State University, Moscow, Russia, 85 pp.
Amburg, N. Ya., Kreines, E. M., & Shabat, G. B. (2004). Parasitical solutions of systems of equations determining Belyi pairs for plane trees. Vestnik Moskovskogo Universiteta, 1, 20–25 [in Russian].
Belyi, G. V. (1979). On Galois extensions of a maximal cyclotomic field. Izvestiya Akademii Nauk SSSR, 43, 269–276 [in Russian]; Mathematics USSR Izvestiya, 14, 247–256 (1980) [English translation].
Bétrim, J., Père, D., & Zvonkin, A. (1992). Plane Trees and their Shabat Polynomials. Catalog. Bordeaux: Rapport Interne de LaBRI, 75–92.
Bowers, Ph. L., & Stefenson, K. (2004). Uniformizing dessins and Belyi maps via circle packing. Memoirs of the American Mathematical Society, 805, 107.
Deligne, P., & Mumford, D. (1969). The irreducibility of the space of curves of given genus. Institut des Hautes Études Scientifiques Publications Mathématiques, 36, 75–109.
Grothendieck, A. (1997). Esquisse d’un programme. London Mathematical Society Lecture Notes Series, 242, 5–48. Cambridge University Press.
Kreines, E. M. (2001). Parasitic solutions of systems of equations on Belyi functions in Hurwitz spaces. Uspehi Matematicheskikh Nauk, 56(6), 155–156 [in Russian].
Jones, G. A., & Singerman, D. (1996). Belyi functions, hypermaps and Galois groups. Bulletin of the London Mathematical Society, 28, 561–590.
Lando, S. K., & Zvonkin, A. K. (2004). Graphs on surfaces and their applications, with an appendix by D. Zagier. Encyclopedia of Mathematical Sciences, 141. Springer.
Lochak, P., & Schneps, L. (1997). Geometric Galois Actions (Vols. 1 & 2). London Mathematical Society Lecture Notes Series, 242–243. Cambridge University Press.
Malle, G., & Matzat, B. H. (1999). Inverse Galois Theory. Springer-Verlag.
Schneps, L. (Ed.). (1994). The Grothendieck Theory of Dessins d’Enfants. London Mathematical Society Lecture Notes Series, 200. Cambridge University Press.
Shabat, G. B. (1998). Combinatorial-topological methods in the theory of algebraic curves. Habilitation Thesis, Moscow State University, Moscow, Russia, 287 pp.
Shabat, G. (2022). Belyi pairs in the critical filtrations of Hurwitz spaces. In L. Ji, A. Papadopoulos, & W. Su (Eds.), Teichmüller Theory and Grothendieck-Teichmüller Theory (pp. 320–341). Advanced Lectures in Mathematics (ALM). International Press.
Shabat, G. B. (2019). Belyi pairs and Fried families. Proceedings of the Steklov Institute of Mathematics, 307, 281–293.
Shabat, G. B. (2018). Counting Belyi pairs over finite fields. In D. R. Wood, J. de Gier, C. E. Praeger, & T. Tao (Eds.), 2016 MATRIX Annals (Vol. 1, pp. 305–322). MATRIX Book Series.
Shabat, G. B., & Voevodsky, V. A. (1990). Drawing curves over number fields. In The Grothendieck Festschrift (Vol. III, pp. 199–227). Progress in Mathematics, 88. Birkhäuser.
Shabat, G., & Zvonkin, A. (1994). Plane trees and algebraic numbers. Contemporary Mathematics, 178, 233–275.
Zvonkin, A. (1998). How to draw a group? Discrete Mathematics, 180, 403–413.