Almost Diagonalization of $\Psi$DO’s Over Various Generalized Function Spaces

Authors

  • Stevan Pilipović Faculty of Sciences, University of Novi Sad, Department of Mathematics and Informatics, Novi Sad, Serbia
  • Nenad Teofanov Faculty of Sciences, University of Novi Sad, Department of Mathematics and Informatics, Novi Sad, Serbia
  • Filip Tomić Faculty of Technical Sciences, University of Novi Sad, Department of Fundamental Sciences, Novi Sad, Serbia

DOI:

https://doi.org/10.5644/SJM.20.01.10

Keywords:

modulation spaces, Gelfand-Shilov spaces, pseudo-differentail operators, Hormander metric

Abstract

Inductive and projective type sequence spaces of sub- and super-exponential growth, and the corresponding inductive and projective limits of modulation spaces are considered as a framework for almost diagonalization of pseudo-differential operators. Moreover, recent results of the first author and B. Prangoski related to the almost diagonalization of pseudo-differential operators in the context of Hormander metrics are reviewed.

2010 Mathematics Subject Classification. 47G30, 46F05, 42C15, 58J40.

Downloads

Download data is not yet available.

References

A. Abdeljawad, S. Coriasco, J. Toft, Liftings for ultra-modulation spaces, and one-parameter groups of Gevrey-type pseudo-differential operators Anal. Appl. (Singap.) 18 (2020), 523–583.

J. M. Bony, On the Characterization of Pseudodifferential Operators (old and new), in Studies in Phase Space Analysis with Applications to PDEs, pp. 21-34, Birkhauser, New York, NY 2013.

E. Cordero, K. Grochening, F. Nikola, L. Rodino, Wiener algebras of Fourier integral Operators, J. Math Pures Appl., 99(2013), 219-233.

E. Cordero, F. Nicola, L. Rodino, Gabor representations of evolution operators, Trans. Am. Math. Soc., 367 (2015), 7639–7663.

E. Cordero, L. Rodino, Time-Frequency Analysis of Operators, De Gruyter Studies in Mathematics, 75 De Gruyter, 2020.

E. Cordero, K. Grochenig, F. Nicola, L. Rodino, Generalized metaplectic operators and the Schrodinger equation with a potential in the Sjostrand class, J. Math. Phys. 55 (2014), no. 8, 081506, 17 pp.

H. G. Feichtinger, Gewichtsfunktionen auf lokalkompakten Gruppen, Osterreich. Akad. Wiss. Math.-Natur. K1. Sitzungsber. II 188 (1979), no. 8-10, p. 451-471.

H. G. Feichtinger, Banach convolution algebras of Wiener type, Colloquia mathematica Societatis Janos Bolyai, 35 1980, 509-523.

H. G. Feichtinger, Modulation spaces on locally compact abelian groups Technical report, University of Vienna, 1983.

M. de Gosson, Symplectic geometry and quantum mechanics, Springer Science & Business Media, 2006.

I. M. Gelfand, G. E. Shilov, Generalized Functions II, Academic Press, New York, 1968.

K. Grochenig, Foundation of Time-Frequency Analysis, Birkhauser, Boston, 2001.

K. Grochenig, Time-frequency analysis of Sjostrand’s class, Revista Matematica Iberoamericana, 22(2) (2006), 703-724.

K. Grochenig, Z. Rzeszotnik, Banach algebras of pseudodifferential operators and their almost diagonalization, Ann. Inst. Fourier (Grenoble) 58 (2008), 2279–2314.

K. Grochenig, Yu. Lyubarskii, Gabor (super)frames with Hermite functions, Math. Ann. 345 (2009), 267–286.

K. Grchenig, Weight functions in time-frequency analysis in ”Pseudodifferential Operators: Partial Differential Equations and Time-Frequency Analysis”, L. Rodino et al., eds., Fields Institute Comm. 52, 343 – 366, 2007.

K. Grochenig, J. Toft, The range of localization operators and lifting theorems for modulation and Bargmann-Fock spaces, Trans. Amer. Math. Soc. 365 (2013), 4475–4496.

L. Hormander, The Weyl calculus of pseudo-differential operators, Comm. Pure Appl. Math. 32(3) (1979), 359-443.

L. Hormander, The analysis of linear partial differential operators. III. Pseudo-differential operators, Reprint of the 1994 edition. Classics in Mathematics. Springer, Berlin, 2007.

Downloads

Published

02.08.2024

How to Cite

Pilipović, S., Teofanov, N., & Tomić, F. (2024). Almost Diagonalization of $\Psi$DO’s Over Various Generalized Function Spaces. Sarajevo Journal of Mathematics, 20(1), 103–119. https://doi.org/10.5644/SJM.20.01.10

Issue

Section

Articles