Characterization of Weyl Functions in the Class of Operator-Valued Generalized Nevanlinna Functions

Authors

  • Muhamed Borogovac Boston Mutual Life, Actuarial Department, Canton, MA 02021, USA

DOI:

https://doi.org/10.5644/SJM.20.01.13

Keywords:

Weyl function, ordinary boundary triple, generalized Nevanlinna function, Pontryagin space

Abstract

We provide the necessary and sufficient conditions for a generalized Nevanlinna function $Q$ ($Q\in N_{\kappa }\left( \mathcal{H} \right)$) to be a Weyl function (also known as a Weyl-Titchmarch function).

We also investigate an important subclass of $N_{\kappa }(\mathcal{H})$, the functions that have a boundedly invertible derivative at infinity $Q'\left( \infty \right):=\lim \limits_{z \to \infty}{zQ(z)}$. These functions are regular and have the operator representation $Q\left( z \right)=\tilde{\Gamma}^{+}\left( A-z \right)^{-1}\tilde{\Gamma},z\in \rho \left( A \right)$, where $A$ is a bounded self-adjoint operator in a Pontryagin space $\mathcal{K}$. We prove that every such strict function $Q$ is a Weyl function associated with the symmetric operator $S:=A_{\vert (I-P)\mathcal{K}}$, where $P$ is the orthogonal projection, $P:=\tilde{\Gamma} \left( \tilde{\Gamma}^{+} \tilde{\Gamma} \right)^{-1} \tilde{\Gamma}^{+} $.

Additionally, we provide the relation matrices of the adjoint relation $S^{+}$ of $S$, and of $\hat{A}$, where $\hat{A}$ is the representing relation of $\hat{Q}:=-Q^{-1}$. We illustrate our results through examples, wherein we begin with a given function $Q\in N_{\kappa }\left( \mathcal{H} \right)$ and proceed to determine the closed symmetric linear relation $S$ and the boundary triple $\Pi$ so that $Q$ becomes the Weyl function associated with $\Pi$.

2020 Mathematics Subject Classification. 34B20, 47B50, 47A06, 47A56

Downloads

Download data is not yet available.

References

R. Arens, Operational calculus of linear relations, Pacific J. Math., 11 (1961), 9-23.

J. Behrndt, Boundary value problems with eigenvalue depending boundary conditions, Mathematische Nachrichten 282 (2009), 659-689.

J. Behrndt, A. Luger, An analytic characterization of the eigenvalues of self-adjoint extensions, J. Funct. Anal. 242 (2007) 607–640.

J. Behrndt, V. A. Derkach, S. Hassi, and H. de Snoo, A realization theorem for generalized Nevanlinna families, Operators and Matrices 5 (2011), no. 4, 679–706.

J. Behrndt, S. Hassi, H. de Snoo, Boundary Value Problems, Weyl Functions, and Differential Operators, Open access eBook; https://doi.org/10.1007/978-3-030-36714-5

J. Bognar, Indefinite Inner Product Spaces, Springer-Verlag, Berlin, Heidelberg, New York, 1974.

M. Borogovac, Inverse of generalized Nevanlinna function that is holomorphic at Infinity, North-Western European Journal of Mathematics, 6 (2020), 19-43.

M. Borogovac, Reducibility of Self-Adjoint Linear Relations and Application to Generalized Nevanlinna Functions, Ukr. Math. J. (2022); https://doi.org/10.1007/s11253-022-02118-x

V. A. Derkach, On generalized resolvents of Hermitian relations in Krein spaces, Journal of Math. Sci, Vol. 97, No. 5, 1999.

V. A. Derkach, Boundary Triplets, Weyl Functions, and the Krein Formula, In book: Operator Theory, Chapter 10, pp.183-218 (2014); DOI: 10.1007/978-3-0348-0667-1 32

V.A. Derkach, S. Hassi, H.S.V. de Snoo, Operator models associated with singular perturbations, Methods Functional Analysis Topology 7 (2001), 1-21,

V. A. Derkach, S. Hassi, M.M. Malamud, and H.S.V. de Snoo, Boundary relations and their Weyl families, Trans. Amer. Math. Soc., 358 (2006), 5351–5400.

V. A. Derkach, M. M. Malamud, Generalized Resolvents and the Boundary Value Problems for Hermitian Operators with Gaps, J. Funct. Anal. 95 (1991) 1-95.

V. A. Derkach, M. M. Malamud, The extension theory of hermitian operators and the moment problem, J. Math. Sciences, 73 (1995), 141–242.

A. Dijksma, H. Langer and H. S. V. de Snoo, Eigenvalues and pole functions of Hamiltonian systems with eigenvalue depending boundary conditions, Math. Nachr. 161 (1993) 107-154.

S. Hassi, A. Luger, Generalized zeros and poles N-functions: on the underlying spectral structure, Methods of Functional Analysis and Topology Vol. 12 (2006), no. 2, pp. 131-150.

S. Hassi, H.S.V. de Snoo, and H. Woracek, Some interpolation problems of NevanlinnaPick type, Oper. Theory Adv. Appl.106 (1998), 201-216.

I. S. Iohvidov, M. G. Krein, H. Langer, Introduction to the Spectral Theory of Operators in Spaces with an Indefinite Metric, Akademie-Verlag, Berlin, 1982.

M. G. Krein and H. Langer, Uber die Q-Funktion eines π-hermiteschen Operatos im Raume Π, Acta Sci. Math. 34, 190-230 (1973).

M. G. Krein and H. Langer, κmitescher Operatoren im Raume Π Uber einige Fortsetzungsprobleme, die eng mit der Theorie herzusammenhangen, I. Einige Funktionenklassen und ihre Darstellungen, Math. Nachr. 77, 187-236 (1977).

M. G. Krein and H. Langer, On defect subspaces and generalized resolvents of Hermitian operator acting in Pontryagyn space, Functional. Anal. i. Prilozhen 5, No. 3 (1971), 54-69; Engl. transl. in Functional Anal. Appl. 5 (1971).

A Luger, A factorization of regular generalized Nevanlinna functions, Integr. Equ. Oper. Theory 43 (2002) 326-345.

A. Luger, Generalized Nevanlinna Functions: Operator Representations, Asymptotic Behavior, In book: Operator Theory, Chapter 15, pp.345-371 (2014); DOI: 10.1007/978-3-0348-06671 35

P. Sorjonen, On linear relations in an indefinite inner product space, Annales Academiae Scientiarum Fennica, Series A. I. Mathematica, Vol.4, 1978/1979, 169-192

Downloads

Published

02.08.2024

How to Cite

Borogovac, M. (2024). Characterization of Weyl Functions in the Class of Operator-Valued Generalized Nevanlinna Functions. Sarajevo Journal of Mathematics, 20(1), 149–171. https://doi.org/10.5644/SJM.20.01.13

Issue

Section

Articles