On Orders of Approximation Functions of Generalized Mixed Smoothness in Lorentz Spaces
DOI:
https://doi.org/10.5644/SJM.15.01.08Keywords:
Lorentz space, approximations of functions, Nikol’skii-Besov class, hyperbolic crossAbstract
We consider the Lorentz space with mixed norm of periodic functions of many variables and Nikol’skii-Besov type classes of the generalized mixed smoothness. We have obtained estimates of the best approximation by trigonometric polynomials with the harmonics from the hyperbolic crosses of functions fromNikol’skii-Besov’s type classes of the generalized mixed smoothness in the Lorentz space with the mixed norm.
Downloads
References
G. Akishev, Approximation of function classes in Lorentz spaces with mixed norm, East Journal of Approx., 14 (2) (2008), 193--214.
G. Akishev, Approximation of function classes in spaces with mixed norms, Mat. Sb., 197 (8) (2006) , 17--40.
G. Akishev, On degree of approximation of function classes in the Lebesgue space with the anisotropic norm, Uchenie Zapiskii Kazan Univer., 148 (2) (2006), 5--17.
G. Akishev, On order of approximation of generalized Nikol'skii-Besov class in Lorentz space, Centre de Recerca Mat., Barcelona. Preprint, 1222 (2016), 1-22.
G. Akishev, Inequalities of distinct metric of polynomials in Lorentz spaces with mixed norm, First Erjanov reading, Pavlodar state universuty, (2004) 211-215.
T.I. Amanov, Representation and embedding theorems for the functional spaces $S_{p, theta}^{r}B(R^{n})$ and $S_{p, theta}^{r}*B$, Tr. Mat. Inst. Steklov., 77 (1965), 143--167.
K.I. Babenko, Approximation by trigonometric polynomials in a certain class of periodic functions of several variables, Dokl. Akad. Nauk SSSR., 132 (5) (1960), 982-985 (English transl. in Soviet math. Dokl. 1 (1960), 672--675 ).
Sh.A. Balgimbaeva, T.I. Smirnov, Bounds for Fourier widths of classes of periodic functions with a mixed modulus of smoothness, Tr. Inst. Mat. i Mekh. UrO RAN., 21 (4) (2015), 78--94.
N.K. Bary , S.B. Stechkin, The best approximations and differential properties of two conjugate functions, Tr. Moskov. Mat. Obshest. 5 (1956), 483--522.
D.B. Bazarkhanov, Approximation with wavelets and Fourier widths of classes of periodic functions of several variables I, Tr. Mat. Inst. Steklov., 269 (2010), 8--30.
K.A. Bekmaganbetov, On orders of approximations of the Besov class in the metric of the anisotropic Lorentz space, Ufimskii Mat. Zh, 1 (2) (2009), 9--16.
K.A. Bekmaganbetov, Orders of approximations of Besov classes in the metric of anisotropic Lorentz spaces, Meth. Fourier Anal. and Approx. Th., (2016), 149--158.
A.P. Blozinski, Multivariate rearrangements and Banach function spaces with mixed norms, Trans. Amer. Math. Soc., 263 (1) (1981), 146-167.
Ya. S. Bugrov, Approximation of function classes with the dominant mixed derivative, Mat. Sb., 64 (3) (1964), 410--418.
R.A. DeVore, S.V. Konyagin, V.N. Temlyakov, Hyperbolic wavelet approximation, Construc. Approx., 14 (1998), 1--26.
Dinh Dung, Approximation by trigonometric polynomials of functions of several variables on the torus, Mat. Sb., 131 (2) (1986), 251--271.
Dinh Dung , Vladimir N. Temlyakov, Tino Ullrich, Hyperbolic cross approximation, E-Preprint, arXiv:1601.03978v1[math.NA], (2016), 1--154.
E.M. Galeev, Approximation of some classes of periodic functions of several variables by Fourier sums in the metric of $tilde{L}_{p}$, Uspekhi Mat. Nauk., 32 (4) (1977), 251--252.
E.M. Galeev, Approximation by of Fourier sums of classes of functions with bounded derivatives, Mat. Zam., 23 (2) (1978), 197--212.
P.I. Lizorkin, S.M. Nikol'skii, Spaces of functions of mixed smoothness from the decomposition point of view, Proc. Stekov Inst. Math. , 187 (1989), 143--161.
B.S. Mityagin, Approximation of functions in the spaces $L_{p}$ and $C$ on the torus, Mat. Sb., 58 (4) (1962), 397--414.
S. M. Nikolskii, Functions with the dominant mixed derivative which satisfy multi Holder's condition, Sib. Mat. Zh., 4 (6) (1963), 1342--1364.
S. M. Nikolskii, Approximation of functions of several variables and embedding theorems, Nauka, Moscow, 1977.
N.S. Nikolskaya, The approximation differentiable functions of several variables by Fourier sums in the $L_{p}$-metric, Sib. Mat. Zh., 15 (2) (1974), 395--412.
N. N. Pustovoitov, Approximation of multidimensional functions with a given majorant of mixed moduli of continuity, Mat. Zam., 65 (1) (1999), 107--117.
N. N. Pustovoitov, On best approximations by analogs of „proper“ and „improper“ hyperbolic crosses, Math. Notes., 93 (3) (2013), 487--496.
A.S. Romanyuk, Approximation of the Besov classes of periodic functions of several variables in the space $L_{q}$, Ukrain . Mat. Zh., 43 (1) (1991), 1297--1306.
A.S. Romanyuk, On approximation of classes of periodic functions of several variables, Ukrain . Mat. Zh., 44 (5) (1992), 596--606.
A.S. Romanyuk, On estimates of approximation characteristics of the Besov classes of periodic functions of many variables, Ukrain . Mat. Zh., 9 (9) (1997), 1409--1422.
L.A. Sherstneva, On the properties of best Lorentz approximations and certain embedding theorems, Izv. Vyssh. Uchebn. Zav. Mat., 10 (1987), 48--58.
W. Sickel, T. Ullrich, Tensor products of Sobolev -- Besov spaces and applications to approximation from the hyperbolic cross, J. Approx. Th., 161(2), 748-- 786 (2009)
M.B. Sikhov, Approximation of functions of several variables with a given majorant in the Besov space, Mat. Zh., 2 (4) (2002), 95--100.
H.-J. Schmeisser, W. Sickel, Spaces of functions of mixed smoothness and approximation from hyperbolic crosses, J. Approx. Th., 128 (2) (2004), 115--150.
S. A. Stasyuk, The best approximations of periodic functions of several variables in the classes $B_{p, theta}^{Omega}$, Mat. Zam., 87 (1) (2010), 108--121.
S. A. Stasyuk, Approximation by Fourier sums and Kolmogorov widths for classes $MB_{p, theta}^{Omega}$ of periodic functions of several variables, Tr. Inst. Mat. i Mekh. UrO RAN., 20 (1) (2014), 247--257.
S. A. Stasyuk, S.Ya. Yanchenko, Approximation of functions from Nikol'skii-Besov type classes of generalized mixed smoothness, Anal. Math., 41 (4) (2015), 311--334.
Sun Yongsheng, Wang Heping, Representation and approximation of multivariate periodic functions with bounded mixed moduli of smoothness, Tr. Mat. Inst. Steklov., 219 (1997) , 356--377.
S.A. Telyakovskii, Some estimates for trigonometric series with quasiconvex coefficients, Mat. Sb., 63 (3) (1964), 426--444.
V.N. Temlyakov, Approximation of functions with bounded mixed derivative, Tr. Mat. Inst. Steklov., 178 (1986), 3--112.
V.N. Temlyakov, Approximation of periodic functions of several variables with bounded mixed differences, Mat. Sb., 113 (1) (1980), 65--80.