Variational Approximation for Modified Meyer-König and Zeller Operators

Authors

  • Emre Taş
  • Tuğba Yurdakadim

DOI:

https://doi.org/10.5644/SJM.15.01.10

Keywords:

Meyer-K¨onig and Zeller operators, convergence in variation, functions of bounded variation

Abstract

In the present paper we introduce modified Meyer-König and Zeller operators which coincide with the classical Meyer-König and Zeller operators if $\omega(x)=x$. We provide sufficient conditions on the boundedness of the total variation of these operators and we also present a result which deals with the variational approximation of the new modified operators.

 

Statistics

Abstract: 39  /   PDF: 16

 

References

U. Abel, V. Gupta and M. Ivan, The complete asymptotic expansion for a general Durrmeyer variant of the Meyer-König and Zeller operators, Math. Comput. Modelling 40 (2004), 867--875.

O. Agratini, On the variation detracting property of a class of operators, Appl. Math. Lett. 19 (2006), 1261--1264.

C. Bardaro, P.L. Butzer, R.L. Stens and G. Vinti, Convergence in variation and rates of approximation for Bernstein-type polynomials and singular convolution integrals, Analysis 23 (2003), 299--340.

V.I. Bogachev, Measure Theory, vol. I. Springer, Berlin, 2007.

E. W. Cheney and A. Sharma, Bernstein power series, Canad. J. Math. 16 (1964), 241--253.

O. Dogru and O. Duman, Statistical approximation of Meyer-K"{o}nig and Zeller operators based on q-integers, Publ. Math. Debrecen 68 (2006), 199--214.

H.G. Ince Ilarslan and G. Bascanbaz Tunca, Convergence in variation for Bernstein-type operators, Mediterr. J. Math. 13 (2016), 2577--2592.

H. Karsli, On convergence of Chlodovsky and Chlodovsky-Kantorovich polynomials in the variation seminorm, Mediterr. J. Math. 10 (2013), 41--56.

A. Kivinukk and T. Metsmagi, Approximation in variation by the Meyer-König and Zeller operators, Proc. Estonian Acad. Sci. 60 (2011), 88--97.

W. Meyer-König and K. Zeller. Bernsteinische potenzreihen, Studia Math. 19 (1960), 89--94.

M.W. Müller, $L_{p}$-approximation by the method of integral Meyer-König and Zeller operators, Studia Math. 63 (1978), 81--88.

Ö. Öksüzer, H. Karsli and F. Tasdelen Yesildal, On the convergence of Bernstein-Stancu polynomials in the variation seminorm, Numer. Funct. Anal. Optim. 37 (2016), 583--602.

E.M. Stein, Functions of exponential type, Ann. Math. 65 (1957), 582--592.

Downloads

Published

07.03.2022

How to Cite

Taş, E. ., & Yurdakadim, T. . (2022). Variational Approximation for Modified Meyer-König and Zeller Operators. Sarajevo Journal of Mathematics, 15(1), 113–127. https://doi.org/10.5644/SJM.15.01.10

Issue

Section

Articles