Variational Approximation for Modified Meyer-König and Zeller Operators
DOI:
https://doi.org/10.5644/SJM.15.01.10Keywords:
Meyer-K¨onig and Zeller operators, convergence in variation, functions of bounded variationAbstract
In the present paper we introduce modified Meyer-König and Zeller operators which coincide with the classical Meyer-König and Zeller operators if $\omega(x)=x$. We provide sufficient conditions on the boundedness of the total variation of these operators and we also present a result which deals with the variational approximation of the new modified operators.
Downloads
References
U. Abel, V. Gupta and M. Ivan, The complete asymptotic expansion for a general Durrmeyer variant of the Meyer-König and Zeller operators, Math. Comput. Modelling 40 (2004), 867--875.
O. Agratini, On the variation detracting property of a class of operators, Appl. Math. Lett. 19 (2006), 1261--1264.
C. Bardaro, P.L. Butzer, R.L. Stens and G. Vinti, Convergence in variation and rates of approximation for Bernstein-type polynomials and singular convolution integrals, Analysis 23 (2003), 299--340.
V.I. Bogachev, Measure Theory, vol. I. Springer, Berlin, 2007.
E. W. Cheney and A. Sharma, Bernstein power series, Canad. J. Math. 16 (1964), 241--253.
O. Dogru and O. Duman, Statistical approximation of Meyer-K"{o}nig and Zeller operators based on q-integers, Publ. Math. Debrecen 68 (2006), 199--214.
H.G. Ince Ilarslan and G. Bascanbaz Tunca, Convergence in variation for Bernstein-type operators, Mediterr. J. Math. 13 (2016), 2577--2592.
H. Karsli, On convergence of Chlodovsky and Chlodovsky-Kantorovich polynomials in the variation seminorm, Mediterr. J. Math. 10 (2013), 41--56.
A. Kivinukk and T. Metsmagi, Approximation in variation by the Meyer-König and Zeller operators, Proc. Estonian Acad. Sci. 60 (2011), 88--97.
W. Meyer-König and K. Zeller. Bernsteinische potenzreihen, Studia Math. 19 (1960), 89--94.
M.W. Müller, $L_{p}$-approximation by the method of integral Meyer-König and Zeller operators, Studia Math. 63 (1978), 81--88.
Ö. Öksüzer, H. Karsli and F. Tasdelen Yesildal, On the convergence of Bernstein-Stancu polynomials in the variation seminorm, Numer. Funct. Anal. Optim. 37 (2016), 583--602.
E.M. Stein, Functions of exponential type, Ann. Math. 65 (1957), 582--592.