Variational Approximation for Modified Meyer-König and Zeller Operators

Authors

  • Emre Taş
  • Tuğba Yurdakadim

DOI:

https://doi.org/10.5644/SJM.15.01.10

Keywords:

Meyer-K¨onig and Zeller operators, convergence in variation, functions of bounded variation

Abstract

In the present paper we introduce modified Meyer-König and Zeller operators which coincide with the classical Meyer-König and Zeller operators if $\omega(x)=x$. We provide sufficient conditions on the boundedness of the total variation of these operators and we also present a result which deals with the variational approximation of the new modified operators.

Downloads

Download data is not yet available.

References

U. Abel, V. Gupta and M. Ivan, The complete asymptotic expansion for a general Durrmeyer variant of the Meyer-König and Zeller operators, Math. Comput. Modelling 40 (2004), 867--875.

O. Agratini, On the variation detracting property of a class of operators, Appl. Math. Lett. 19 (2006), 1261--1264.

C. Bardaro, P.L. Butzer, R.L. Stens and G. Vinti, Convergence in variation and rates of approximation for Bernstein-type polynomials and singular convolution integrals, Analysis 23 (2003), 299--340.

V.I. Bogachev, Measure Theory, vol. I. Springer, Berlin, 2007.

E. W. Cheney and A. Sharma, Bernstein power series, Canad. J. Math. 16 (1964), 241--253.

O. Dogru and O. Duman, Statistical approximation of Meyer-K"{o}nig and Zeller operators based on q-integers, Publ. Math. Debrecen 68 (2006), 199--214.

H.G. Ince Ilarslan and G. Bascanbaz Tunca, Convergence in variation for Bernstein-type operators, Mediterr. J. Math. 13 (2016), 2577--2592.

H. Karsli, On convergence of Chlodovsky and Chlodovsky-Kantorovich polynomials in the variation seminorm, Mediterr. J. Math. 10 (2013), 41--56.

A. Kivinukk and T. Metsmagi, Approximation in variation by the Meyer-König and Zeller operators, Proc. Estonian Acad. Sci. 60 (2011), 88--97.

W. Meyer-König and K. Zeller. Bernsteinische potenzreihen, Studia Math. 19 (1960), 89--94.

M.W. Müller, $L_{p}$-approximation by the method of integral Meyer-König and Zeller operators, Studia Math. 63 (1978), 81--88.

Ö. Öksüzer, H. Karsli and F. Tasdelen Yesildal, On the convergence of Bernstein-Stancu polynomials in the variation seminorm, Numer. Funct. Anal. Optim. 37 (2016), 583--602.

E.M. Stein, Functions of exponential type, Ann. Math. 65 (1957), 582--592.

Downloads

Published

07.03.2022

How to Cite

Taş, E. ., & Yurdakadim, T. . (2022). Variational Approximation for Modified Meyer-König and Zeller Operators. Sarajevo Journal of Mathematics, 15(1), 113–127. https://doi.org/10.5644/SJM.15.01.10

Issue

Section

Articles