Cesàro Means of Subsequences of Double Sequences

Authors

  • Emre Taş
  • Cihan Orhan

DOI:

https://doi.org/10.5644/SJM.15.02.03

Keywords:

Double sequences, Pringsheim convergence, the Buck-Pollard Property, double subsequences

Abstract

In this paper we characterize the convergence and $\left( C,1,1\right) $ summability of a double sequence. In particular we study conditions under which the convergence or $\left( C,1,1\right) $ summability of a double sequence carry over to that of its subsequences, \ and conversely, whether these properties for suitable subsequences imply them for the sequence itself. We show, for instance, that a bounded double sequence is $\left(C,1,1\right) $ summable if and only if almost all of its subsequences are $\left( C,1,1\right) $ summable.

Downloads

Download data is not yet available.

References

M. A. Broomwich, An introduction to the theory of infinite series, Macmillan Co., London, 1942.

R. C. Buck and H. Pollard, Convergence and summability properties of subsequences, Bull. Amer. Math. Soc., 49 (1943), 924--931.

D. J. H. Garling, Inequalities: A Journey into Linear Analysis, Cambridge University Press, New York, 2007.

N. V. Huan and N. V. Quang, The Doob inequality and strong law of large numbers for multidimensional arrays in general Banach spaces, Kybernetika (Prague), 48 (2012), 254--267.

M. Crnjac, F. Čunjalo and H.I. Miller, Subsequence characterizations of statistical convergence of double sequences, Radovi Math., 12 (2004), 163--175.

H. I. Miller, A-statistical convergence of subsequence of double sequences. (English, Italian summaries), Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat., 10 (2007), 727--739.

F. Möricz, On the convergence in a restricted sense of multiple series, Analysis Mathematica, 5 (1979), 135--147.

F. Möricz, The kronecker lemmas for multiple series and some applications, Acta. Math. Acad. Sci. Hungar., 37 (1981), 39--50.

C. Orhan, E. Tas and T. Yurdakadim, The Buck-Pollard property for $p-Cesgrave{a}ro$ matrices, Numer. Funct. Anal. Optim., 33 (2012), 1--7.

A. Pringsheim, On the theory of double infinite sequences of numbers. (Zur theorie der zweifach unendlichen zahlenfolgen.), Math. Ann., 53 (1900), 289--321.

R. F. Patterson, A characterization for the limit points of double sequences, Demons. Math., 4 (1999), 775--780.

R. F. Patterson and E. Savas, A category theorem for double sequences, Appl. Math. Lett., 24 (2011), 1680--1684.

N. V. Quang and N. V. Huan, On the strong law of large numbers and L$_{p}$-convergence for double arrays of random elements in p-uniformly smooth Banach spaces, Statist. Probab. Lett., 79 (2009), 1891--1899.

T. Tsuchikura, Arithmetic means of subsequences, Tôhoku Mathematical Journals, 27 (1950), 188--191.

T. Tsuchikura, Notes on Fourier analysis. XL. Remark on the Rademacher system, Proc. Japan Acad., 27 (1951), 141--145.

M. Unver, Inclusion results for four dimensional Cesàro submethods, Stud. Univ. Babeş-Bolyai Math., 58 (2013), 43--54.

Downloads

Published

12.02.2020

How to Cite

Taş, E. ., & Orhan, C. . (2020). Cesàro Means of Subsequences of Double Sequences. Sarajevo Journal of Mathematics, 15(2), 169–179. https://doi.org/10.5644/SJM.15.02.03

Issue

Section

Articles