Compactness in Singular Cardinals Revisited
DOI:
https://doi.org/10.5644/SJM.15.02.05Keywords:
set theory, group theory, almost free groups, almost free algebras, varietiesAbstract
This is the second combinatorial proof of the compactness theorem for singular from 1977. In fact it gives a somewhat stronger theorem.
Downloads
References
Shai Ben David, On Shelah's compactness of cardinals, Israel J. Math. 31 (1978), 34--56 and 394.
Keith J. Devlin and Saharon Shelah, A weak version of $diamondsuit $ which follows from $2^{aleph _{0}}<2^{aleph _{1}}$, Israel J. Math. 29 (1978), 239--247.
Paul C. Eklof, On singular compactness, Algebra Universalis, 14 (1982), no.~3, 310--316.
William G. Fleissner, Questions, 1977, preprint.
Wilfrid Hodges, For singular $lambda$, $lambda$-free, implies free. Algebra Universalis, 12 (1981), 205--220.
David W. Kueker, Countable approximations and Lowenheim-Skolem theorems, Ann. Math. Logic, 11 (1977), 57--103.
Saharon Shelah, Dependent dreams: recounting types, arxiv:1202.5795.
---------------- Note on a min-max problem of Leo Moser, J. Combin. Theory, 6 (1969), 298--300.
---------------- A compactness theorem for singular cardinals, free algebras, Whitehead problem and transversals, Israel J. Math. 21 (1975), 319--349.
---------------- A combinatorial proof of the singular compactness theorem. Now 266, Mimeograph notes and lecture in a mini-conference, Berlin, 'August', 77 (1977).