Survey on the Kakutani problem in p-adic analysis I
DOI:
https://doi.org/10.5644/SJM.15.02.09Keywords:
p-adic analytic functions, corona problem, multiplicative spectrumAbstract
Let $\K$ be a complete ultrametric algebraically closed field and let $A$ be the Banach $\K$-algebra of bounded analytic functions in the ''open'' unit disk $D$ of $\K$ provided with the Gauss norm. Let $Mult(A,\Vert \ . \ \Vert)$ be the set of continuous multiplicative semi-norms of $A$ provided with the topology of pointwise convergence, let $Mult_m(A,\Vert \ . \ \Vert)$ be the subset of the $\phi \in Mult(A,\Vert \ . \ \Vert)$ whose kernel is a maximal ideal and let $Mult_1(A,\Vert \ . \ \Vert)$ be the subset of the $\phi \in Mult(A,\Vert \ . \ \Vert)$ whose kernel is a maximal ideal of the form $(x-a)A$ with $ a\in D$. By analogy with the Archimedean context, one usually calls {\it ultrametric Corona problem, or ultrametric Kakutani problem} the question whether $Mult_1(A,\Vert \ . \ \Vert)$ is dense in $Mult_m(A,\Vert \ . \ \Vert)$. In order to recall the study of this problem that was made in several successive steps, here we first recall how to characterize the various continuous multiplicative semi-norms of $A$, with particularly the nice construction of certain multiplicative semi-norms of $A$ whose kernell is neither a null ideal nor a maximal ideal, due to J. Araujo. Here we prove that multbijectivity implies density. The problem of multbijectivity will be described in a further paper.
Downloads
References
Araujo J. Nonmaximal ideals and the Berkovich space of the algebra of bounded analytic functions, Journal of Mathematical Analysis and Applications, Volume 455, Issue 1, 1, p. 221-245 (2017).
Berkovich, V. Spectral Theory and Analytic Geometry over Non-archimedean Fields. AMS Surveys and Monographs 33, (1990).
Bourbaki, N. Topologie générale, Ch. I, Actualités scientifiques et industrielles, Hermann, Paris (1981).
Carleson, L. Interpolation by bounded analytic functions and the corona problem. Annals of Math. 76, p. 547-559 (1962).
Escassut, A. Analytic Elements in p-adic Analysis, World Scientific Publishing Inc., Singapore (1995).
Escassut, A. Spectre maximal d'une algébre de Krasner. Colloquium Mathematicum (Wroclaw) XXXVIII2, pp 339-357 (1978).
Escassut, A. Ultrametric Banach Algebras, World Scientific Publishing Inc., Singapore (2003).
Escassut, A. and Mainetti, N. About the ultrametric Corona problem, Bulletin des Sciences Mathématiques 132, p. 382-394 (2008)
Escassut, A. Ultrametric Corona problem and spherically complete fields, Proceedings of the Edingburgh Mathematical Society, (Series 2), Volume 53, Issue 02, pp 353-371 (2010).
Escassut, A. Value Distribution in $p$-adic Analysis, World Scientific Publishing Inc., Singapore (2016).
Escassut, A. and Maïnetti, N. Multiplicative spectrum of ultrametric Banach algebras of continuous functions, Topology and its applications 157, p. 2505-25015 (2010). (2015).
Garandel, G. Les semi-normes multiplicatives sur les algébres d'éléments analytiques au sens de Krasner, Indag. Math., 37, n4, p.327-341, (1975).
Guennebaud, B. Sur une notion de spectre pour les algébres normées ultramétriques, thése Université de Poitiers, (1973).
Krasner, M. Prolongement analytique uniforme et multiforme dans les corps valués complets. Lestendances géométriques en algébre et théorie des nombres, Clermont-Ferrand, p.94-141 (1964). Centre National de la Recherche Scientifique (1966), (Colloques internationaux du C.N.R.S. Paris, 143).
Lazard, M. Les zéros des fonctions analytiques sur un corps valué complet, IHES, Publications Mathématiques n14, p.47-75 ( 1962).
Van Der Put, M. The Non-Archimedean Corona Problem Table Ronde Anal. non Archimedienne, Bull. Soc. Math. M'emoire 39-40, p. 287-317 (1974).