Cesaro-Like Operators
DOI:
https://doi.org/10.5644/SJM.15.02.11Keywords:
generalized Cesaro operator, subnormal, operatorAbstract
In previous work it was shown that the lower triangular generalized Hausdorff matrix $H_{\alpha}$ with nonzero entries $h_{nk} = (n+\alpha+1)^{-1}$, for $\alpha \geq 0$, is subnormal on $\ell^2$ if and only if $\alpha = 0, 1, 2, \ldots$. For $0 < h \leq 1$, the weighted Cesaro operator $C^{\prime}_h : \{a_n\} \to \{b_n\}$ on $\ell^2$, when $b_n = (a_0 + d_1a_1 + \cdots + d_na_n)/(n + 1)d_n$, is subnormal when $d_j^2 = \Gamma(j + 1)\Gamma(h)/\Gamma(j + h)$. In this paper we show that, when $d_j = \Gamma(j + 1)\Gamma(h)/\Gamma(j + h)$, the square of the weights chosen above, then the corresponding operator $C_h$ is bounded on $\ell^2$ for $0 < h < 3/2$, that $H_{\alpha}$ is bounded on $\ell^2$ for all non-integer $\alpha < 0$, and that $C_h$ is closely related to $H_{h-1}$. This relationship leads to our main result that $C_h$ is only subnormal when $h = 1$, when it corresponds to the original Cesaro operator with $\alpha = 0$ and each $d_j = 1$.
Downloads
References
A. Brown, P. R. Halmos, and A. L. Shields, Cesaro operators, Acta. Sci. Math. (Szeged), 26(1-2)(1965), 125-137.
G. Bennett, Some elementary inequalities, Quarterly J. Math. 38(1987), 401-425.
B. K. Ghosh, B. E. Rhoades, and D. Trutt, Subnormal generalized Hausdorff operators, Proc. Amer. Math Soc. 66(2)(1977), 261-266.
A. Jakimovski, B. E Rhoades, and J. Tzimbalario, Hausdorff matrices as bounded operators over $ell^p$, Math Z. 138(1974), 173-181.
E. Kay, H. Soul, and D. Trutt, Some subnormal operators and hypergeometric kernel functions, J. Math. Anal. Appl. 53(1976), 237-242.
T. L. Kriete and D. Trutt, The Cesaro operator in $ell^2$ is subnormal, American J. Math. 93(1971), 215-225.
S. Maurer, Subnormality of the generalized Cesaro operator and the structure theory for Newton measures, Wabash Seminar (Feb. 25, 1994), unpublished.
Erdelyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher Transcendental Functions, Vol. 2, McGraw-Hill, New York (1953).