On a Refinement of Hardy’s Inequalities via Superquadratic And Subquadratic Functions

Authors

  • Ghulam Farid Abdus Salam School of Mathematical Sciences, GC University, Lahore, Pakistan
  • Kristina Krulić Faculty of Textile Technology, University of Zagreb, Zagreb, Croatia
  • Josip Pečarić Faculty of Textile Technology, University of Zagreb, Zagreb, Croatia

DOI:

https://doi.org/10.5644/SJM.07.2.03

Keywords:

Kernels, measures, Hardy type operators, superquadratic function, subquadratic function, integral identities

Abstract

Let $A_k$ be an integral operator defined by
$$
A_kf(x):=\frac{1}{K(x)} \iom2 k(x,y)f(y)d\oy,
$$
where $k:\Omega_1\times \Omega_2 \to \R$ is a general nonnegative kernel,and
$(\Omega_1,\Sigma_1,\mu_1)$, $(\Omega_2,\Sigma_2,\mu_2)$ are measure spaces with $\sigma$-finite measures and
$$
K(x):=\iom2 k(x,y)d\oy, \quad x \in \Omega_1.
$$
In this paper we define a functional as a difference between the right-hand side and the left-hand side of the refined Hardy type inequality with general measures and kernels using the notation of superquadratic and subquadratic functions inequality and study its properties, such as exponential and logarithmic convexity.

 

2000 Mathematics Subject Classification. Primary 26D10, Secondary 26D15

Downloads

Download data is not yet available.

References

S. Abramovich, S. Banic and M. Matić, Superquadratic functions in several variables, J. Math. Anal. Appl., 327 (2) (2007), 1444–1460.

S. Abramovich, G. Jameson and G. Sinnamon, Refining of Jensen’s inequality, Bull. Math. Soc. Sci. Math. Roumanie (N.S.), 47 (95) (2004), 3–14.

S. Abramovich, G. Jameson and G. Sinnamon, Inequalities for averages of convex and superquadratic functions, J. Inequal. Pure Appl. Math., 5 (4) (2004), Art. 91 [ONLINE: http//www.emis.de/journals/JIPAM]

S. Abramovich, K. Krulic, J. Pečarić, and L. E. Persson, Some new refined Hardy type inequalities with general kernels and measures, Aequationes Math., 79 (1–2) (2010), 157–172.

S. N. Bernstein, Sur les fonctions absolument monotones, Acta Math., 52 (1929), 1–66.

G. H. Hardy, Note on a theorem of Hilbert, Math. Z., 6 (1920), 314-317.

G. H. Hardy, Notes on some points in the integral calculus, LX. An inequality between integrals, Messenger Math., 54 (1925), 150-156.

K. Krulic, J. Pečarić, and L. E. Persson, Some new Hardy type inequalities with general kernels, Math. Inequal Appl., 12 (3) Article ID 36, (2009), 473–485.

C. Niculescu, L. E. Persson, Convex Functions and their Applications. A Contemporary Approach, CMC Books in Mathematics, Springer, New York, 2006.

D. S Mitrinovic, J. E. Pečarić and A. M. Fink, Classical and new Inequalities in Analysis, Kluwer Academic Publishers, The Netherlands, 1993.

D. S Mitrinovic and J. E. Pečarić, On some inequalities for monotone functions, Boll. Unione. Mat. Ital. VII, Ser. B, 5 (2) (1991), 407–416

J. A. Oguntuase and L. E. Persson, Refinement of Hardy’s inequalities via superquadratic and subquadratic functions, J. Math. Anal. Appl., 339 (2008), 1305–1312.

J. A. Oguntuase, L. E. Persson, E. K. Essel and B. A. Popoola, Refined multidimensional Hardy-type inequalities via superquadracity, Banach J. Math. Anal., 2 (2) (2008), 129– 139.

Downloads

Published

10.06.2024

How to Cite

Farid, G., Krulić, K., & Pečarić, J. (2024). On a Refinement of Hardy’s Inequalities via Superquadratic And Subquadratic Functions. Sarajevo Journal of Mathematics, 7(2), 163–175. https://doi.org/10.5644/SJM.07.2.03

Issue

Section

Articles