Analytic, Real Analytic and Harmonic Generalized Functions

Authors

  • S. Pilipović Department of Mathematics and Informatics, University of Novi Sad, Novi Sad, Serbia

DOI:

https://doi.org/10.5644/SJM.07.2.07

Keywords:

Algebra of generalized functions, wave front

Abstract

We recall definitions and assertions concerning the spaces noted in the title. Various classes of nonlinear problems can be studied within these spaces appropriate for the analysis of different kinds of singularities. Especially, we explain in this paper the notion of the generalized analytic wave front set.

 

2000 Mathematics Subject Classification. 46F10, 46S10, 35A27

Downloads

Download data is not yet available.

References

S. Axler, P. Bourdon and W. Ramey, Harmonic Function Theory, Second edition. Graduate Texts in Mathematics, 137. Springer-Verlag, New York, 2001.

J. Aragona, On existence theorems for the ∂¯ operator on generalized differential forms, Proc. London Math. Soc., 53 (1986), 474–488.

J. Aragona, R. Fernandez and S. O. Juriaans, Discontinuous Colombeau differential calculus, Monatsh. Math., 144 (2005), 13–29.

H. A. Biagioni, A Nonlinear Theory of Generalized Functions, Springer-Verlag, Berlin-Hedelberg-New York, 1990.

J. F. Colombeau, New Generalized Functions and Multiplications of Distributions, North Holland, 1982.

J. F. Colombeau, Elementary Introduction in New Generalized Functions, North Holland, 1985.

J. F. Colombeau and J. E. Gal´e, Holomorphic generalized functions, J. Math. Anal. Appl., 103 (1984), 117–133.

J. F. Colombeau and J. E. Gal´e, Analytic continuation of generalized functions, Acta Math. Hung., 52 (1988), 57-60.

C. Garetto, Topological structures in Colombeau algebras: investigation of the duals of $mathcal{G}_c(Omega)$,

$mathcal{G}(Omega)$ and $mathcal{GS}(R^n)$}, Monatsh. Math., 146 (2005), 203-226.

C. Garetto, Topological structures in Colombeau algebras: topological Ce-modules and duality theory, Acta Appl. Math., 88 (2005), 81-123.

C. Garetto and G. H¨ormann, Microlocal analysis of generalized functions: pseudodifferential techniques and propagation of singularities, Proc. Edinburgh Math. Soc., 48, (2005), 603-629.

M. Grosser, M. Kunzinger, M. Oberguggenberger and R. Steinbauer, Geometric Generalized Functions with Applications to General Relativity, Kluwer, 2001.

R.C. Gunning and H. Rossi, Analytic Functions of Several Complex Variables, Englewood Cliffs: Prentice-Hall, 1965.

C. Hanel, E. Mayerhofer, S. Pilipovi´c and H. Vernaeve, Homogeneity in algebras of generalized functions, J. Math. Anal. Appl., 339 (2008), 889–904.

L. H¨ormander, The Analysis of Linear Partial Differential Operators. I, Grundlehren der Mathematischen Wissenschaften, 256, Springer-Verlag, Berlin, 1983.

G. H¨ormann, H¨older-Zygmund regularity in algebras of generalized functions, Z. Anal. Anwendungen, 23 (2004), 139-165.

L. Hormander, Uniqueness theorems and wave front sets for solutions of linear differential equations with analytic coefficients, Commun. Pure Appl. Math., 24 (1971) 671-704.

A. Kaneko, Introduction to Hyperfunctions, Dordercht, Kluwer, 1982.

A. Khelif and D. Scarpalezos, Zeros of generalized holomorphic functions, Monatsh. Math., 149 (2006), 323–335.

I. Kmit, M. Kunzinger and R. Steinbauer, Generalized solutions of the Vlasov-Poisson system with singular data, J. Math. Anal. Appl., 340 (2008), 575–587.

S. Konjik and M. Kunzinger, Generalized group actions in a global setting, J. Math. Anal. Appl., 322 (2006), 420–436.

J. A. Marti, $Ge^L$-Microlocal analysis of generalized functions, Int. Tansf. Spec. Funct., 17, (2006), 119 - 125.

E, Mayerhofer, The wave equation on static singular space-times, PhD Thesis, arXiv:0802.1616.

E. Michael, Continuous selections I, Annal. Math, 63 (1956), 361–382.

E. Michael, A short proof of the Arens-Eells embedding theorem, Proc. Amer. Math. Soc., 15 (1964), 415–416

M. Morimoto, An Introduction to Sato’s Hyperfunctions, Providence, Rhode Island, Amer. Math. Soc., 1993.

M. Oberguggenberger, Rotationally invariant Colombeau generalized functions, In: A. Delcroix, M. Hasler, J-A. Marti and V. Valmorin, (eds)Nonlinear Algebraic Analysis and Applications, Proceedings of the International Conference on Generalized Functions (ICGF 2000), 227–236, 2004. Cottenham, Cambridge Scientific.

M. Oberguggenberger, Multiplication of distributions and application to partial differential equations, Pitman Res. Notes Math. Ser., 259, Longman, Harlow, 1992.

M. Oberguggenberger, M. Kunzinger, Characterization of Colombeau generalized functions by their pointvalues, Math. Nachr., 203 (1999), 147–157.

M. Oberguggenberger, S. Pilipovic and D. Scarpalezos, Positivity and positive definiteness in generalized function algebras, J.Math. Anal. Appl., 328 (2007), 1321–1335.

M. Oberguggenberger, S. Pilipovic and V. Valmorin, Global holomorphic representatives of holomorphic generalized functions, Monatsh. Math., 151 (2007), 67–74.

S. Pilipovic, Generalized hyperfunctions and algebra of megafunctions, Tokyo J. Math., 28 (2005), 1–12.

S. Pilipovic, D. Scarpalezos and V. Valmorin, Real analytic generalized functions, Monatsh. Math., 156 (2009), 85–102.

S. Pilipovic and D. Scarpalezos, Harmonic generalized function algebras, Monatsh. Math., 2010.

D. Scarpalezos, Topologies dans les espaces de nouvelles fonctions g´en´eralis´ees de Colombeau. Ce–modules topologiques, Preprint ser. Universit´e Paris 7, Universit´e Paris 7, 1992.

L. Schwartz, Theorie des distributiones, Hermann, Paris, 1950.

V. Valmorin, Vanishing theorems in ${cal G}^infty$ classes of Colombeau generalized functions, Preprint AOC, 2005.

Downloads

Published

10.06.2024

How to Cite

Pilipović, S. (2024). Analytic, Real Analytic and Harmonic Generalized Functions. Sarajevo Journal of Mathematics, 7(2), 207–222. https://doi.org/10.5644/SJM.07.2.07

Issue

Section

Articles