Pedal Sets of Unitals in Projective Planes of Order 9 and 16

Authors

  • Vedran Krˇcadinac Department of Mathematics, Faculty of Science, University of Zagreb, Zagreb, Croatia
  • Ksenija Smoljak Faculty of Textile Technology, University of Zagreb, Zagreb, Croatia

DOI:

https://doi.org/10.5644/SJM.07.2.10

Keywords:

Unital, projective plane, pedal set

Abstract

Let ...

 

2000 Mathematics Subject Classification. 51E20

Downloads

Download data is not yet available.

References

J. Andr´e, Uber nicht-Desarguessche Ebenen mit transitiver Translationsgruppe, Math. Z., 60 (1954), 156–186.

S. Barwick and G. Ebert, Unitals in projective planes, Springer, 2008.

R. H. Bruck and R. C. Bose, The construction of translation planes from projective spaces, J. Algebra, 1 (1964), 85–102.

F. Buekenhout, Existence of unitals in finite translation planes of order q 2 with a kernel of order q, Geom. Dedicata, 5 (1976), 189–194.

U. Dempwolff and A. Reifart, The classification of the translation planes of order 16, I, Geom. Dedicata, 15 (1983), 137–153.

J. M. Dover, Some design-theoretic properties of Buekenhout unitals, J. Combin. Des., 4 (1996), 449–456.

J. M. Dover, A family of non-Buekenhout unitals in the Hall planes, in: N.L. Johnson (Ed.), Mostly Finite Geometries, Lecture Notes in Pure and Applied Mathematics, Vol. 190, 1997, pp. 197–206.

The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.4.12, 2008. (http://www.gap-system.org)

K. Gr¨uning, A class of unitals of order q which can be embedded in two different planes of order q 2 , J. Geometry, 29 (1987), 61–77.

D. R. Hughes and F. C. Piper, Projective Planes, Springer, 1973.

P. Kaski and P. R. J. Osterg˚ard, ¨ Classification of resolvable balanced incomplete block designs–the unitals on 28 points, Math. Slovaca, 59 (2009), 121–136.

C. W. H. Lam, G. Kolesova and L. Thiel, A computer search for finite projective planes of order 9, Discrete Math., 92 (1991), 187–195.

B. D. McKay, nauty User’s Guide (Version 2.4), Australian National University, 2009.

T. Penttila and G. F. Royle, Sets of type (m, n) in the affine and projective planes of order nine, Des. Codes Cryptogr., 6 (1995), 229–245.

T. Penttila, G. F. Royle and M. K. Simpson, Hyperovals in the known projective planes of order 16, J. Combin. Des., 4 (1996), 59–65.

L. A. Rosati, Disegni unitari nei piani di Hughes, Geom. Dedicata, 27 (1988), 295–299.

G. F. Royle, Projective planes of order 16. http://mapleta.maths.uwa.edu.au/~gordon/remote/planes16/

S. D. Stoichev and V. D. Tonchev, Unital designs in planes of order 16, Discrete Appl. Math., 102 (2000), 151–158.

K. L. Wantz, A new class of unitals in the Hughes plane, Geom. Dedicata, 70 (1998), 125–138.

Downloads

Published

10.06.2024

How to Cite

Krˇcadinac, V., & Smoljak, K. (2024). Pedal Sets of Unitals in Projective Planes of Order 9 and 16. Sarajevo Journal of Mathematics, 7(2), 255–264. https://doi.org/10.5644/SJM.07.2.10

Issue

Section

Articles