The Cyclic Quadrangle in the Isotropic Plane
DOI:
https://doi.org/10.5644/SJM.07.2.11Keywords:
Isotropic plane, cyclic quadrangle, diagonal triangle, diagonal pointsAbstract
In [15], [2] we focused on the geometry of the non-tangential quadrilateral and in [3], [14] we turned our attention to the non-cyclic quadrangle in the isotropic plane. This paper gives some of the results concerning the geometry of a cyclic quadrangle in the isotropic plane. A cyclic quadrangle is called standard if a circle with the equation y = x 2 is circumscribed to it. In order to prove geometric facts for each cyclic quadrangle, it is sufficient to give a proof for the standard quadrangle. Diagonal points and the diagonal triangle of the cyclic quadrangle are introduced. Some properties of the cyclic quadrangle are given where most of them are related to its diagonal triangle.
2000 Mathematics Subject Classification. 51N25
Downloads
References
J. Beban-Brki´c, R. Kolar-Super, Z. Kolar-Begovi´c and V. Volenec, ˇ On Feuerbach’s theorem and a pencil of circles in I2, J. Geom. Graphics, 10 (2006), 125–132.
J. Beban-Brki´c, M. Simi´c and V. Volenec, ˇ Diagonal triangle of a non-tangential quadrilateral in the isotropic plane, Math. Commun., (in print).
J. Beban-Brki´c, M. Simi´c and V. Volenec, ˇ On Some Properties of Non Cyclic Quadrangle in Isotropic Plane, Proc. 13th Internat. Conf. Geom. Graphics, Dresden, 2008.
J. Beban-Brki´c, M. Simi´c and V. Volenec, ˇ On Foci and Asymptotes of Conics in Isotropic Plane, Sarajevo J. Math., 3 (2) (2007), 257–266.
Beseke, Aufgabe 146, Zeitschr. Math. Naturwiss. Unterr., 37 (1906), 279.
C. J. Bradley, The diagonal points of a cyclic quadrangle, Crux Math., 31 (2005), 168–172.
J. Dou, A circular concurrence, Amer. Math. Monthly, 96 (1989), 647-648.
R. Kolar-Super, Z. Kolar-Begovi´c, J. Beban-Brki´c and V. Volenec, ˇ Metrical relationships in standard triangle in an isotropic plane, Math. Commun., 10 (2005), 159–167.
Z. Kolar-Begovi´c, R. Kolar-Super, J. Beban-Brki´c and V. Volenec, ˇ Symmedians and the symmedian center of the triangle in an isotropic plane, Math. Pannonica, 17 (2006), 287–301.
H. Martini and M. Spirova, On similar triangles in the isotropic plane, Rev. Roumaine Math. Pures Appl., 51 (1) (2006), 57–64.
H. Martini and M. Spirova, Circle geometry in affine Cayley-Klein planes, Period. Math. Hungar., 57 (2) (2008), 197–206.
H. Sachs, Ebene Isotrope Geometrie, Vieweg-Verlag, Braunschweig-Wiesbaden, 1987, 198 S.
K. Strubecker, Geometrie in einer isotropen Ebene, Math. Naturwiss. Unterr., 15 (1962–63), 297–306, 343–351, 385–394.
M. Simi´c, V. Volenec and J. Beban-Brki´c, ˇ On umbilic Axes of circles of the non cyclic quadrangle in the isotropic plane, Math. Pannonica, 21 (2) (2010), 1–12.
V. Volenec, J. Beban-Brki´c and M. Simi´c, ˇ The focus and the median of a nontangential quadrilateral in the isotropic plane, Math. Commun., 15 (2010), 117–127.
V. Volenec, J. Beban-Brki´c, R. Kolar-Super and Z. Kolar-Begovi´c, ˇ Orthic axis, Lemoine line and Longchamps line of the triangle in I2, Rad HAZU, 503 (2009), 13–19.