On Real Cohomology Generators of Compact Homogeneous Spaces
DOI:
https://doi.org/10.5644/SJM.07.2.12Abstract
In this paper we discuss the degrees of real cohomology generators of compact homogeneous spaces. We relate these degrees to rational homotopy groups and, furthermore, we discuss the formality and geometric formality of compact homogeneous spaces in the light of their cohomology generators. For generalized symmetric spaces the explicit formulas are obtained.
2000 Mathematics Subject Classification. 53C25, 57R57, 58A14, 57R17
Downloads
References
A. Borel, Sur la cohomologie des espaces fibres principaux et des espaces homog ´ enes de groupes de Lie compacts, Annal. Math., 57 (1953), 115–207.
H. S. M. Coxeter, The product of the generators of a finite group generated by reflections, Duke Math. J., 18 (1951), 765–782
R. L. Bryant, An Introduction to Lie Groups and Symplectic Geometry in Geometry and Quantum Field Theory, 1991, ed. D. F. Freed and K. K. Uhlenbeck, IAS/Park City Mathematics Institute, American Mathematical Society.
S. S. Chern, Complex Manifolds, The University of Chicago, 1956.
B. A. Dubrovin, A. T. Fomenko and S. P. Novikov, Modern Geometry – Methods and Applications, Vol. III, Graduate Texts in Mathematics 124, Springer Verlag 1990.
Y. Felix, S. Halperin and J. C. Thomas, Rational Homotopy Theory, Springer Verlag [7] W. Greub, S. Halperin and R. Vanstone, Connections, Curvature, and Cohomology, 3 vols., Academic Press 1972–1976.
D. Kotschick, On products of harmonic forms, Duke Math. J., 107 (3) (2001), 521–532.
D. Kotschick and S. Terzic,´ On formality of generalized symmetric spaces, Math. Proc. Camb. Philos. Soc., 134 (2003), 491–505.
D. Kotschick and S. Terzic,´ On geometric formality of homogeneous spaces and of biqoutients, Pacific J. Math., 249 (2011), 157–176.
O. Kowalski, Generalized Symmetric Spaces, Springer LNM 805 1980.
A. L. Onishchick, Topology of Transitive Transformation Groups (Russian), Fizmatlit “Nauka”, Moscow 1995.
D. Sullivan, Differential Forms and the Topology of Manifolds, in Manifolds Tokyo 1973, ed. A. Hattori, University of Tokyo Press 1975.
M. Takeuchi, On Pontrjagin classes of compact symmetric spaces, J. Fac. Sci. Univ. Tokyo Sec I, 9 (1962), 313–328.
S. Terzic,´ Real Cohomology and Characteristic Pontrjagin Classes of Generalized Symmetric Spaces (Russian), Vsesojuz. Inst. Naucn. i Tenh. Informacii 1034 - V, Moscow 1998.
S. Terzic,´ Cohomology with real coefficients of generalized symmetric spaces (Russian), Fundam. Prikl. Mat., 7 (1) (2001), 131–157.
S. Terzic,´ Rational homotopy groups of generalized symmetric spaces, Math. Z., 243 (2003), 491–523.
V. I. Vedernikov and A. S. Fedenko, Symmetric Spaces and Their Generalizations (Russian), Algebra. Topology. Geometry, Vol. 14, 249–280. Akad. Nauk SSSR Vsesojuz. Inst. Naucn. i Tehn. Informacii, Moscow 1976.
E. B. Vinberg and A. L. Onishchik, A Seminar on Lie Groups and Algebraic Groups (Russian), Second edition, Moscow 1995.
J. A. Wolf and A. Gray, Homogeneous spaces defined by Lie group automorphisms I, J. Differ. Geom., 2 (1968), 77–114.