Two Exponential Formulas for $\alpha$-Times Integrated Semigroups $\boldsymbol{(\alpha} \boldsymbol{\in} \boldsymbol{\mathbb{R}^ + )}$

Authors

  • Fikret Vajzović Faculty of Natural Science, University of Sarajevo, Department of Mathematics, Sarajevo, Bosnia and Herzegovina
  • Ramiz Vugdalić Faculty of Natural Science, University of Tuzla, Department of Mathematics, Tuzla, Bosnia and Herzegovina

DOI:

https://doi.org/10.5644/SJM.01.1.09

Keywords:

$C_{0}-$ semigroup, $\alpha -$ times integrated exponentially bounded semigroup, exponential formula, Banach space, linear operator

Abstract

In this paper $X$ is a Banach space, $\left( {S(t)}\right) _{t\geq 0}$ is non-dege\-ne\-ra\-te $\alpha -$times integrated, exponentially bounded semigroup on $X$ $(\alpha \in \mathbb{R}^{+}),$ $M\geq 0$ and $\omega _{0}\in \mathbb{R}$ are constants such that $\left\| {S(t)}\right\| \leqslant Me^{\omega _{0}t}$ for all $t\geq 0,$ $\gamma $ is any positive constant greater than $\omega _{0},$ $\Gamma $ is the Gamma-function, $(C,\beta )-\lim $ is the Ces\`{a}ro-$\beta $ limit. Here we prove that
\begin{equation*}
\mathop {\lim }\limits_{n\rightarrow \infty }\frac{1}{{\Gamma
(\alpha )}} \int\limits_{0}^{T}{(T-s)^{\alpha -1}\left(
{\frac{{n+1}}{s}}\right) ^{n+1}R^{n+1}\left(
{\frac{{n+1}}{s},A}\right) x\,ds=S(T)x,}
\end{equation*}
for every $x\in X,$ and the limit is uniform in $T>0$ on any bounded interval. Also we prove that
\begin{equation*}
S(t)x=\frac{1}{{2\pi i}}(C,\beta )-\mathop {\lim }\limits_{\omega
\rightarrow \infty }\int\limits_{\gamma -i\omega }^{\gamma
+i\omega }{ e^{\lambda t}\frac{{R(\lambda ,A)x}}{{\lambda
^{\alpha }}}\,d\lambda },
\end{equation*}
for every $x\in X,\,\,\beta >0$ and $t\geq 0.$

 

2000 Mathematics Subject Classification. 47D06, 47D60, 47D62

Downloads

Download data is not yet available.

References

W. Arendt, Resolvent positive operators and integrated semigroups, Proc. London Math. Soc., (3) 54 (1987), 321–349.

H. Kellermann and M. Hieber, Integrated semigroups, J. Funct. Anal., 84 (1989), 160–180.

H. Kellermann, Integrated semigroups, Dissertation, Universitat Tubingen, 1986

F. Neubrander, Integrated semigroups and their applications to the abstract Cauchy problem, Pacific J. Math., 135 (1988), 111–155.

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York-Berlin, 1983.

E. Hille and R. S. Phillips, Functional Analysis and Semigroups, Amer. Math. Soc. Colloq. Publ., Vol. 31. Providence, Rhode Island, 1957.

H. Thieme, Integrated semigroups and integrated solutions to abstract Cauchy problems, J. Math. Anal. Appl., 152 (1990), 416–447.

S. Kalabuˇsi´c and F. Vajzovi´c, Exponential formula for one-time integrated semigroups, Novi Sad J. Math., 33 (2003), 1–12.

M. Mijatovi´c, S. Pilipovi´c and F. Vajzovi´c, α− times integrated semigroups $(alpha in mathbb{R}^{+})$, J. Math. Anal. Appl., 210 (1997), 790–803.

Downloads

Published

12.06.2024

How to Cite

Vajzović, F., & Vugdalić, R. (2024). Two Exponential Formulas for $\alpha$-Times Integrated Semigroups $\boldsymbol{(\alpha} \boldsymbol{\in} \boldsymbol{\mathbb{R}^ + )}$. Sarajevo Journal of Mathematics, 1(1), 93–115. https://doi.org/10.5644/SJM.01.1.09

Issue

Section

Articles