Two Exponential Formulas for $\alpha$-Times Integrated Semigroups $\boldsymbol{(\alpha} \boldsymbol{\in} \boldsymbol{\mathbb{R}^ + )}$
DOI:
https://doi.org/10.5644/SJM.01.1.09Keywords:
$C_{0}-$ semigroup, $\alpha -$ times integrated exponentially bounded semigroup, exponential formula, Banach space, linear operatorAbstract
In this paper $X$ is a Banach space, $\left( {S(t)}\right) _{t\geq 0}$ is non-dege\-ne\-ra\-te $\alpha -$times integrated, exponentially bounded semigroup on $X$ $(\alpha \in \mathbb{R}^{+}),$ $M\geq 0$ and $\omega _{0}\in \mathbb{R}$ are constants such that $\left\| {S(t)}\right\| \leqslant Me^{\omega _{0}t}$ for all $t\geq 0,$ $\gamma $ is any positive constant greater than $\omega _{0},$ $\Gamma $ is the Gamma-function, $(C,\beta )-\lim $ is the Ces\`{a}ro-$\beta $ limit. Here we prove that
\begin{equation*}
\mathop {\lim }\limits_{n\rightarrow \infty }\frac{1}{{\Gamma
(\alpha )}} \int\limits_{0}^{T}{(T-s)^{\alpha -1}\left(
{\frac{{n+1}}{s}}\right) ^{n+1}R^{n+1}\left(
{\frac{{n+1}}{s},A}\right) x\,ds=S(T)x,}
\end{equation*}
for every $x\in X,$ and the limit is uniform in $T>0$ on any bounded interval. Also we prove that
\begin{equation*}
S(t)x=\frac{1}{{2\pi i}}(C,\beta )-\mathop {\lim }\limits_{\omega
\rightarrow \infty }\int\limits_{\gamma -i\omega }^{\gamma
+i\omega }{ e^{\lambda t}\frac{{R(\lambda ,A)x}}{{\lambda
^{\alpha }}}\,d\lambda },
\end{equation*}
for every $x\in X,\,\,\beta >0$ and $t\geq 0.$
2000 Mathematics Subject Classification. 47D06, 47D60, 47D62
Downloads
References
W. Arendt, Resolvent positive operators and integrated semigroups, Proc. London Math. Soc., (3) 54 (1987), 321–349.
H. Kellermann and M. Hieber, Integrated semigroups, J. Funct. Anal., 84 (1989), 160–180.
H. Kellermann, Integrated semigroups, Dissertation, Universitat Tubingen, 1986
F. Neubrander, Integrated semigroups and their applications to the abstract Cauchy problem, Pacific J. Math., 135 (1988), 111–155.
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York-Berlin, 1983.
E. Hille and R. S. Phillips, Functional Analysis and Semigroups, Amer. Math. Soc. Colloq. Publ., Vol. 31. Providence, Rhode Island, 1957.
H. Thieme, Integrated semigroups and integrated solutions to abstract Cauchy problems, J. Math. Anal. Appl., 152 (1990), 416–447.
S. Kalabuˇsi´c and F. Vajzovi´c, Exponential formula for one-time integrated semigroups, Novi Sad J. Math., 33 (2003), 1–12.
M. Mijatovi´c, S. Pilipovi´c and F. Vajzovi´c, α− times integrated semigroups $(alpha in mathbb{R}^{+})$, J. Math. Anal. Appl., 210 (1997), 790–803.