Happy Birthday Mirjana !
DOI:
https://doi.org/10.5644/SJM.20.01.02Keywords:
Graded and paragraded structures, groups, rings, modules, radicals of paragraded rings, Wedderburn-Artin theorem, ADS-theorem for paragraded ringsAbstract
This issue of Sarajevo Journal of Mathematics is devoted to our editor in chief Acad. Prof. Dr. Mirjana Vuković on the occasion of her jubilee. Here we will give a brief overview of her life and work.
Statistics
Abstract: 206 / PDF: 148
References
[1] M. Vuković (& M. Krasner), Structures paragraduées (groupes, anneaux, modules) I, Proc. Japan Acad., Ser. A, 62, No. 9, 350-352 (1986). https://projecteuclid.org/euclid.pja/1195514122
[2] M. Vuković (& M. Krasner), Structures paragraduées (groupes, anneaux, modules) II, Proc. Japan Acad., Ser. .A, 62, No. 10, 389-391, (1986). https://projecteuclid.org/euclid.pja/1195514064
[3] M. Vuković (& M. Krasner), Structures paragraduées (groupes, anneaux, modules) III, Proc. Japan Acad., Ser. A, 63, No. 1, 10-12 (1987). https://projecteuclid.org/euclid.pja/1195514019
[4] M. Vuković (& M. Krasner), Structures paragraduées (groupes, anneaux, modules) (scientific monograph), Queen's Papers in Pure and Applied Mathematics, No.77, viii+163, 1987. Cover of the Mongraph: https://www.anubih.ba/images/clanovi/redovni/biografije/20240718_COVER_-_VIAF_MV.pdf
[5] P. Ribenboim, Il mondo Krasneriano, Queen's preprint, No. 1983-12, Queen's University, Kingston, ON., Canada, pp. 158.
[6] M. Vuković, Structures graduées et paragraduées, Prepublication de l'Institut Fourier, Universite de Grenoble I (CNRS), No. 536, pp. 1-40 (2001). https://www-fourier.univ-grenoble-alpes.fr/sites/default/files/ref_536.pdf
[7] M. Vuković (& E. Ilić Georgijević), Primary Decomposition of General Graded Structures, Buletunul Acad. de Ştiinţe a Republicii Moldova, Matematica, 1, 77, pp. 87- 96 (2015).
[8] M. Vuković (& E. Ilić Georgijević), A Note on Radicals of Paragraded Rings, Sarajevo J. Math., Vol. 12 (25), No. 2, Suppl., pp. 307- 316 (2016).
[9] M. Vuković (& E. Ilić Georgijević), A Note on General Radicals of Paragraded Rings, Sarajevo, J. Math. Vol. 12 (25), No. 2, Suppl., 317-324 (2016).
[10] M. Vuković (& E. Ilić Georgijević), The Wedderburn–Artin Theorem for Paragraded Rings, J. Math. Sci., 221, №. 3, 391- 400 (2017) (Translat. from Fundam. Prikl. Mat., Moscow, T. 19, No. 6, 125-139 (2014)).
[11] M. Vuković, From Krasner's Corpoid and Bourbaki's Graduations to Krasner's Graduations and Krasner-Vuković's Paragraduations, Sarajevo J. Math. Vol.14 (27), No.2, pp.175-190 (2018).
[12] M. Vuković, On noncommutative paragraded rings, Sarajevo J. Math. Vol.16, No.1, pp. 5-11 (2020).
[13] M. Vuković, Radicals of paragraded rings, J. Math. Sci., 275, No. 4, 379-392 (2023) (Translat. from Fund. Prikl. Mat., Vol. 24, No. 2, pp. 3-22 (2022).
[14] M. Vuković, Panoramic view of graded structures from Euler and Bourbaki–Krasner to Krasner–Vuković, Fund. Prik. Mat., vol. 24, No. 3, 23-37(2023), in Russian (it will appear in J. Math. Sci. in 2024, in English).
[15] M. Vuković, Brown-McCoy and large Brown-McCoy radicals of paragraded rings (accepted for publication).
[16] M. Vuković, Teorija grupa i reprezentacija s primjenama u fizici, Sarajevo Publishing & Prirodno-matemat. fakultet, Sarajevo, pp. 384 (2003)
[17] M. Vuković (&V. Perić), Algebra – Teorija grupa (Pregled teorije i zadaci), Univerzitet u Istočnom Sarajevu, Trebinje, pp. 6+365 (2021).
[18] M. Vuković, From the Belgrade School of Mihajlo Petrović Alas to the Sarajevo School of Analysis (in Serbian), Scientific Meetings Serbian Academy of Science and Arts, on October 2-3, 2018, Book CLXXXII, Presidency Book 12, Mihajlo Petrovicć Alas, pp. 161-172.(2019). https://dais.sanu.ac.rs/bitstream/handle/123456789/9392/rad11.pdf?sequence=1&isAllowed=y
[19] M. Vuković, Mathematicians – academicians, ANUBiH - Posebna izdanja, Knj. CCVII, Odjeljenje prirod. i mat. nauka, Knj. 28, pp. 150 (2023)
[20] M. Vuković, Curriculum Vitae in pictures, ANUBiH, Sarajevo, 2024 https://www.anubih.ba/images/news/PDF/20230809%20Akademkinja%20Mirjana%20Vukovic.pdf
Downloads
Published
How to Cite
Issue
Section
License
Copyright is retained by the author(s).

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.





