On the convolution and neutrix convolution of the functions $\boldsymbol{\sinh^{-1}x}$ and $\boldsymbol{x^r}$
DOI:
https://doi.org/10.5644/SJM.11.1.03Keywords:
Convolution, neutrix convolution, neutrix limitAbstract
The neutrix convolution $\sinh^{-1}x \circledast x^r$ is evaluated for $r=0,1,2,\ldots .$ Further results are also given.
Statistics
Abstract: 29 / PDF: 8
References
[1] J. G. van der Corput, Introduction to the neutrix calculus, J. Analyse Math., 7 (1959--1960), 291--398.
[2] B. Fisher, Neutrices and the convolution of distributions, Univ. of Novi Sad, Zb. Rad. Prirod.-Mat. Fak. Ser. Mat, 17 (1987), 119--135.
[3] B. Fisher and B. Jolevska-Tuneska, On the logarithmic integral, Hacet. J. Math. Stat., 39 (3) (2010), 393-401.
[4] B. Fisher, M. Telci and F. Al-Sirehy) The error function and the neutrix convolution, Internat. J. Appl. Math., 8 (3) (2002), 295--309.
[5] B. Jolevska-Tuneska and B. Fisher, On the logarithmic integral and convolutions, Bull. Malaysa. Math. Sci., (2) 37 (3) (2012), 671--677.
[6] B. Jolevska-Tuneska, B. Fisher and E. Özçağ, On the dilogarithm integral, Int. J. Appl. Math., 24 (3) (2011), 361--369.
[7] B. Fisher and J. D. Nicholas, The exponential integral and the convolution, SUT J. Math., 33 (2) (1997), 139-148.
[8] B. Fisher and J. D. Nicholas, On the exponential integral, Hacet. Bull. Nat. Sci. Eng. Ser. B, 28 (1999), 55--64.
[9] I. M. Gel'fand and G.E. Shilov, Generalized Function, Vol. I, Academic Press, 1964.
[10] M. Lin, B. Fisher and S. Orankitjaroen, On the non-commutative neutrix convolution of $tan^{-1}x$ and $x^r$, Math. Moravica, to appear.
Downloads
Published
How to Cite
Issue
Section
License
Copyright is retained by the author(s).

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.





