Coincidence and common fixed points of weakly reciprocally continuous and compatible hybrid mappings via an implicit relation and an application

Authors

  • Sunny Chauhan Near Nehru Training Center, Uttar Pradesh, India
  • Mohammad Imdad Department of Mathematics, Aligarh Muslim Univeristy, Aligarh, India
  • Zoran Kadelburg Faculty of Mathematics, University of Belgrade, Beograd, Serbia
  • Calogero Vetro Dipartimento di Matematica e Informatica, Universita degli Studi di Palermo, Palermo, Italy

DOI:

https://doi.org/10.5644/SJM.11.1.06

Keywords:

Hybrid pair of mappings, compatible mappings, non-compatible mappings, weak reciprocal continuity, coincidence point, common fixed point, implicit relation

Abstract

Using the hybrid version of the notion of weakly reciprocally continuous pairs of mappings due to Gairola et al. [Coincidence and fixed point for weakly reciprocally continuous single-valued and multi-valued maps, Demonstratio Math. (2013/2014), accepted], we prove a coincidence and common fixed point theorem for a hybrid pair of compatible mappings via an implicit relation. Our main result improves and generalizes a host of previously known theorems. As an application, we give a homotopy theorem which supports our main result.

 

Statistics

Abstract: 29  /   PDF: 6

 

References

[1] R. P. Agarwal, M. Meehan and D. O'Regan, Fixed Point Theory and Applications, Cambridge Univ. Press, United Kingdom, (2001).

[2] J. P. Aubin and I. Ekeland, Applied Nonlinear Analysis, Wiley, New York, (1984).

[3] V. Berinde and F. Vetro, Common fixed points of mappings satisfying implicit contractive conditions, Fixed Point Theory Appl., (2012), 2012:105.

[4] R. W. Corley, Some hybrid fixed point theorems related to optimization, J. Math. Anal. Appl., 120 (1980), 528--532.

[5] A. Gairola, J. Singh and M. C. Joshi, Coincidence and fixed point for weakly reciprocally continuous single-valued and multi-valued maps, Demonstratio Math., Article in press (2014).

[6] M. Imdad and J. Ali, A general fixed point theorem for hybrid contractions via implicit functions, South East Asian Bull. Math., 31 (2007), 73--80.

[7] M. Imdad, A. Ahmad and S. Kumar, On nonlinear nonself hybrid contractions, Rad. Mat., 10 (2) (2001), 233--244.

[8] Z. Kadelburg, S. Chauhan and M. Imdad, A hybrid common fixed point theorem under certain recent properties, Sci. World J., 2014 (2014), Article ID 860436, 6 pages.

[9] H. Kaneko, Single-valued and multi-valued $f$-contractions, Boll. Unione Mat. Ital., 4-A, (1985), 29--33.

[10] H. Kaneko, A common fixed point of weakly commuting multi-valued mappings, Math. Jap., 33 (5), (1988), 741--744.

[11] S. B. Nadler Jr., Multivalued contraction mappings, Pacific J. Math., 20 (2) (1969), 457--488.

[12] R. P. Pant, Common fixed points of four mappings, Bull. Cal. Math. Soc., 90 (1998), 281--286.

[13] R. P. Pant, R. K. Bisht and D. Arora, Weak reciprocal continuity and fixed point theorems, Ann. Univ. Ferrara, Sez. VII Sci. Mat., 57 (1), (2011), 181--190.

[14] H. K. Pathak, S. M. Kang, Y. J. Cho, Coincidence and fixed point theorems for nonlinear hybrid generalized contractions, Czechoslov. Math. J. 48(123) (1998), 341--357.

[15] V. Popa, Fixed point theorems for implicit contractive mappings, Stud. Cerc. St. Ser. Math. Univ. Bacau, 7 (1997), 127--133.

[16] V. Popa, Some fixed point theorems for compatible mappings satisfying an implicit relation, Demonstratio Math., 33 (1999), 157--163.

[17] V. Popa, Coincidence and fixed points theorems for noncontinuous hybrid contractions, Nonlinear Anal. Forum, 7 (2)(2002), 153--158.

[18] V. Popa, M. Mocanu, Altering distance and common fixed points under implicit relations, Hacettepe J. Math. Stat. 33(3) (2009), 329--337.

[19] V. Popa and A. M. Patriciu, Coincidence and common fixed points for hybrid mappings satisfying an implicit relation and applications, Thai J. Math., submitted.

[20] S. L. Singh, A. M. Hashim, New coincidence and fixed point theorems for strictly contractive hybrid maps, Aust. J. Math. Anal. Appl. 2(1) (2005), Art. 12, 7 pages.

[21] S. L. Singh, K. S. Ha and Y. J. Cho, Coincidence and fixed points of nonlinear hybrid contractions, Int. J. Math. Math. Sci., 12 (2) (1989), 247--256.

[22] S. L. Singh, S. N. Mishra, Coincidence and fixed points of non-self hybrid contractions, J. Math. Anal. Appl. 256 (2001), 486--497.

[23] C. Vetro and F. Vetro, Common fixed points of mappings satisfying implicit relations in partial metric spaces, J. Nonlinear Sci. Appl., 6 (3) (2013), 152--161.

[24] R. Wegrzyk, Fixed point theorems for multivalued functions and their applications to functional equations, Diss. Math., (Rozprawy Mat.), 201 (1982), 1--28.

Downloads

Published

03.06.2015

How to Cite

Chauhan, S., Imdad, M., Kadelburg, Z., & Vetro, C. (2015). Coincidence and common fixed points of weakly reciprocally continuous and compatible hybrid mappings via an implicit relation and an application. Sarajevo Journal of Mathematics, 11(1), 73–84. https://doi.org/10.5644/SJM.11.1.06

Issue

Section

Articles