Equicevian points and equiangular lines of a triangle in an isotropic plane
DOI:
https://doi.org/10.5644/SJM.11.1.08Keywords:
Isotropic plane, admissible triangle, standard triangle, equicevian points, equicevian linesAbstract
The concepts of equicevian points and equiangular lines of a triangle in an isotropic plane are studied in this paper. A number of significant properties of the introduced concepts are considered.
Statistics
Abstract: 22 / PDF: 3
References
[1] G. Brocard, Centre de transversales angulaires egales, Mathesis, 6 (1896), 217-221.
[2] R. Kolar--Šuper, Z. Kolar--Begović, V. Volenec and J. Beban--Brkić, Metrical relationships in a standard triangle in an isotropic plane, Math. Communications, 10 (2) (2005), 149--157.
[3] Z. Kolar--Begović, R. Kolar--Šuper, J. Beban--Brkić and V. Volenec, Symmedians and the symmedian center of the triangle in an isotropic plane, Math. Pannonica, 17/2 (2006), 287--301.
[4] J. Neuberg, Note sur l'article précédent, Mathesis, 6 (1896), 221-225.
[5] J. R. Pounder, Equal cevians, Crux Math., 6 (1980), 98-104, 239-240.
[6] V. Volenec, Z. Kolar--Begović and R. Kolar--Šuper, Steiner's ellipses of the triangle in an isotropic plane, Math. Pannonica, 21 (2010), 229--238.
[7] H. Sachs, Ebene isotrope Geometrie, Vieweg--Verlag, Braunschweig/Wiesbaden, 1987.
[8] K. R. S. Sastry, Problem 1923, Crux Math., 20 (1994), 74.
[9] K. Strubecker, Geometrie in einer isotropen Ebene, Math. Naturwiss. Unterricht, 15 (1962), 297--306, 343--351, 385--394.
Downloads
Published
How to Cite
Issue
Section
License
Copyright is retained by the author(s).

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.





