Convex Lattice Heptagons with Boundary Trapezoids
DOI:
https://doi.org/10.5644/SJM.21.02.12Keywords:
polygon, integer lattice, trapezoidsAbstract
We consider a Cartesian coordinate system. A point in a plane whose both coordinates are integers is called a lattice point. A polygon that has lattice points for all its vertices is called a convex lattice polygon. A quadrilateral whose vertices are four consecutive vertices of a convex integer polygon is called a boundary quadrilateral of that polygon. It is interesting to investigate convex lattice polygons whose all boundary quadrilaterals are trapezoids.
Statistics
Abstract: 4 / PDF: 0
References
S. Rabinowitz, Convex Lattice Polytopes, PhD thesis, Polytechnic University, Brooklyn, New York, 1986.
M. Ćitić, Egzistencija nekih konveksnih cjelobrojnih poligona, Magistarski rad, Univerzitet u Istočnom Sarajevu, Filozofski fakultet, Pale, 2011.
S. Rabinowitz, O(n³) Bounds for the Area of Convex Lattice n-gon, Geombinatorics, 2 (1993), 85–88.
V. Govedarica, Neki problemi egzistencije i optimizacije konveksnih cjelobrojnih poligona, Doktorska disertacija, Univerzitet u Istočnom Sarajevu, Filozofski fakultet, Pale, 2005.
V. Govedarica, M. Ćitić, M. Rapaić, T. Šekara, Optimizacija površine u konveksnim cjelobrojnim petouglovima, Četvrta matematička konferencija Republike Srpske, Trebinje, 2015, 173–182.
Downloads
Published
How to Cite
Issue
Section
License
Copyright is retained by the author(s).

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.





