Generalized Analysis of Time Scale Dynamic Lyapunov's Inequalities by Using Specht's and Kantorovich's Ratios

Authors

  • Muhammad Jibril Shahab Sahir Department of Mathematics and Statistics, The University of Lahore, Lahore, Pakistan

DOI:

https://doi.org/10.5644/SJM.21.01.07

Keywords:

Time scales, Lyapunov's inequality, Rogers--Holder's inequality

Abstract

In this paper, we present extensions of dynamic Lyapunov's inequalities and their reverse versions on time scales by using Specht's and Kantorovich's ratios. Our approach unifies and extends some continuous inequalities and their corresponding discrete and quantum analogues.

 

Statistics

Abstract: 203  /   PDF: 35

 

References

R. P. Agarwal, D. O'Regan and S. H. Saker, Dynamic Inequalities on Time Scales, Springer International Publishing, Cham, Switzerland, 2014.

D. Anderson, J. Bullock, L. Erbe, A. Peterson and H. Tran, Nabla dynamic equations on time scales, Pan-American Mathematical Journal, 13 (1) (2003), 1--47.

M. Bohner and A. Peterson, Dynamic Equations on Time Scales, Birkhauser Boston, Inc., Boston, MA, 2001.

M. Bohner and A. Peterson, Advances in Dynamic Equations on Time Scales, Birkhauser Boston, Boston, MA, 2003.

A. A. El-Deeb, H. A. Elsennary and W. S. Cheung, Some reverse Holder inequalities with Specht's ratio on time scales, J. Nonlinear Sci. Appl., 11 (2018), 444--455.

J. I. Fujii, S. Izumino and Y. Seo, Determinant for positive operators and Specht's theorem, Sci. Math., 1 (1998), 307--310.

S. Furuichi, Refined Young inequalities with Specht's ratio, Journal of the Egyptian Mathematical Society, 20 (2012), 46--49.

S. Hilger, Ein Mass kettenkalkul mit Anwendung auf Zentrumsmannigfaltigkeiten, Ph.D. Thesis, Universitat Wurzburg, 1988.

W. Liao, J. Wu and J. Zhao, New versions of reverse Young and Heinz mean inequalities with the Kantorovich constant, Taiwanese J. Math., 19 (2) (2015), 467--479.

M. J. S. Sahir, Parity of classical and dynamic inequalities magnified on time scales, Bull. Int. Math. Virtual Inst., 10 (2) (2020), 369--380.

M. J. S. Sahir, Consonancy of dynamic inequalities correlated on time scale calculus, Tamkang Journal of Mathematics, 51 (3) (2020), 233--243.

M. J. S. Sahir, Homogeneity of classical and dynamic inequalities compatible on time scales, International Journal of Difference Equations, 15 (1) (2020), 173--186.

M. J. S. Sahir, Conjunction of classical and dynamic inequalities coincident on time scales, Advances in Dynamical Systems and Applications, 15 (1) (2020), 49--61.

M. J. S. Sahir, Patterns of time scale dynamic inequalities settled by Kantorovich's ratio, Jordan Journal of Mathematics and Statistics (JJMS), 14 (3) (2021), 397--410.

Q. Sheng, M. Fadag, J. Henderson and J. M. Davis, An exploration of combined dynamic derivatives on time scales and their applications, Nonlinear Anal. Real World Appl., 7 (3) (2006), 395--413.

W. Specht, Zur theorie der elementaren mittel}, Math. Z., 74 (1960), 91--98.

M. Tominaga, Specht's ratio in the Young inequality, Sci. Math. Jpn., 55 (2002), 583--588.

C. J. Zhao and W. S. Cheung, Holder's reverse inequality and its applications, Publ. Inst. Math., Nouv. Ser., 99 (2016), 211--216.

H. Zuo, G. Shi and M. Fujii, Refined Young inequality with Kantorovich constant, J. Math. Inequal., 5 (4) (2011), 551--556.

Downloads

Published

05.09.2025

How to Cite

Sahir, M. J. S. (2025). Generalized Analysis of Time Scale Dynamic Lyapunov’s Inequalities by Using Specht’s and Kantorovich’s Ratios. Sarajevo Journal of Mathematics, 21(1), 77–87. https://doi.org/10.5644/SJM.21.01.07

Issue

Section

Articles