Spiral-like Functions associated with Borel Distribution-Type Mittag-Leffler Function
DOI:
https://doi.org/10.5644/SJM.21.01.08Keywords:
Analytic function, Borel distribution, Mittag-Leffler function, spiral-like function, convolutionAbstract
The purpose of the present paper is to obtain some sufficient conditions for analytic functions, whose coefficients are probabilities of the Borel Distribution-Type Mittag-Leffler Function, to belong to the class of spiral-like univalent functions. Further, we discuss the geometric properties of an integral operator related to the Borel Distribution-type Mittag-Leffler Function. Moreover, we investigated and explored some applications of our main results for the error function.
Statistics
Abstract: 194 / PDF: 50
References
M. Abramowitz and I. A. Stegun (Eds.), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications Inc., New York, 1965.
Ş. Altınkaya, Poisson distribution results for $vartheta$-spirallike functions of order $gamma$, Appl. Math. J. Chin. Univ., 37 (2022), 415–421. https://doi.org/10.1007/s11766-022-4253-8
Ş. Altınkaya, On the inclusion properties for $vartheta $-spirallike functions involving both Mittag-Leffler and Wright function, Turkish J. Math., 46(3) (2022), 1119–1131. https://doi:10.55730/1300-0098.3147
A.A. Attiya, Some applications of Mittag-Leffler function in the unit disk, Filomat, 30(7) (2016), pp. 2075-2081. https://doi.org/10.2298/FIL1607075A
D. Bansal and J.K. Prajapat, Certain geometric properties of the Mittag-Leffler functions, Complex Var. Elliptic Equ., 61(3) (2016), pp. 338-350. https://doi.org/10.1080/17476933.2015.1079628
P.L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften Series 259, Springer Verlag, New York, 1983.
K.K. Dixit and S.K. Pal, On a class of univalent functions related to complex order, Indian J. Pure Appl. Math., {26} (9) (1995), 889-896.
S.M. El-Deeb, G. Murugusundaramoorthy and A. Alburaikan, Bi-Bazilevic functions based on the Mittag-Leffler-type Borel distribution associated with Legendre polynomials}, J. Math. Comput. Sci., 24 (2022), 235–45.
B.A. Frasin, T. Al-Hawary and F. Yousef, Some properties of a linear operator involving generalized Mittag-Leffler function, Stud. Univ. Babeş-Bolyai Math., 65(1) (2020), 67-75. https://doi.org/10.24193/subbmath.2020.1.06
R. Gorenflo, A.A. Kilbas, and S.V. Rogosin, On the generalized Mittag-Leffler type function, Integral Transform Spec. Funct., 7 no. 3-4 (1998), pp. 215-224.
P.N. Kamble and M.G. Shrigan, Coefficient estimates for a subclass of bi-univalent functions defined by Sualuagean type q-calculus operator, Kyungpook Math. J., 58(2018), 677–688. https://doi.org/10.5666/KMJ.2018.58.4.677
P.N. Kamble and M.G. Shrigan, Initial coefficient estimates for bi-univalent functions, Far East J. Math., 105(2) (2018), 271-282.
Y.U.F. Luchko and H.M. Srivastava, The exact solution of certain differential equations of fractional order by using operational calculus, Comput. Math. Appl., 29, no. 8 (1995), pp. 73–85.
G. Murugusundaramoorthy, Subordination results for spiral-like functions associated with the Srivastava-Attiya operator, Integral Transforms Spec. Funct., 23(2) (2012), 97–103.
G. Murugusundaramoorthy, B.A. Frasin; T. Al-Hawary, Uniformly convex spiral functions and uniformly spirallike functions associated with Pascal distribution series, Mathematica Bohemica, 147 no.3 (2022), pp. 407–417.
G.M. Mittag-Leffler, Sur la nouvelle fonction E(x), C. R. Acad. Sci. Paris, {137 } (1903), pp. 554-558.
S. Noreen, M. Raza and S.N. Malik, Certain geometric properties of Mittag-Leffler functions, J. Inequal. Appl., 94 (2019), 2019. https://doi.org/10.1186/s13660-019-2044-4
M.S. Robertson, On the theory of univalent functions. Ann. Math., 37(2) (1936), pp. 374–408.
H. Silverman, Univalent functions with negative coefficients, Proc. Am. Math. Soc., 51 (1975), pp. 109–116.
L. Spacek, Contribution a la theorie des fonctions univalentes, Casopis Pest. Mat., 62 (1932), pp. 12–19.
M.G. Shrigan, S. Yalcin, and Ş. Altınkaya, Unified approach to starlike and convex functions involving Poisson distribution series, Bul. Acad. Stiincte Repub. Moldova Mat., 97(3) (2021), 11–20.
A. Swaminathan, Certain sufficiency conditions on hypergeometric functions, J. Inequal. Pure Appl. Math. 5 no.4 (2004), 1–10.
H.M. Srivastava, G. Murugusundaramoorthy and S.M. EL-Deeb, Faber polynomial coefficient estimates of bi-close-to-convex functions connected with the Borel distribution of the Mittag-Leffler type, J. Nonlinear Var. Anal., 5 no.1 (2021), pp. 103-118. https://doi.org/10.23952/jnva.5.2021.1.07
A.K. Wanas and J.A. Khuttar, Applications of Borel distribution series on analytic functions, Earthline J. Math. Sci., {1} 2020, 71–82.
A. Wiman, Uber den Fundamental satz in der Theorie der Funcktionen E(x), Acta Math., 29 (1905), 191–201.
Downloads
Published
How to Cite
Issue
Section
License
Copyright is retained by the author(s).

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.





