Strong Ideal convergence in topological spaces

Authors

  • Sudipta Dutta Assistant Professor, Department of Mathematics, Chunaram Gobinda Memorial Government College (Former Govt. General Degree College at Manbazar-II), Purulia, Pin-723131, West Bengal, India
  • Rima Ghosh Research Scholar, Jadavpur University, Kolkata-700032, West Bengal, India

DOI:

https://doi.org/10.5644/SJM.21.01.10

Keywords:

Topological Space, Statistical Convergence, Ideal Convergence, Strong Convergence

Abstract

We define two convergence techniques in this study: statistical $A_{\mathcal{T}} $-strong convergence and $ A^{\mathcal{I}}_{\mathcal{T}} $-strong convergence, both of which are generalizations of $A_{\mathcal{T}} $-strong convergence in Hausdorff topological spaces via a certain class of special functions. Similar to the classic scenario, we find some correlations between $ A^{\mathcal{I}} $-statistical convergence and $ A^{\mathcal{I}}_{\mathcal{T}} $-strong convergence. Additionally, we obtain a characterization of $ A^{\mathcal{I}} $-statistical convergence.

 

Statistics

Abstract: 187  /   PDF: 55

 

References

R. Aldrovandi and J. G. Pereira, An Introduction to Geometrical Physics, World Scientific, 1995.

J. Boos, Classical and Modern Methods in Summability, Oxford Univ. Press, 2000.

H. Cakalli and M. K. Khan, Summability in topological spaces, Appl. Math. Lett. 24 (2011), no. 3, 348-352.

J. S. Connor, The Statistical and strong $p$-Cesaro convergence of sequences, Analysis, 8(1988), 47-63.

J. S. Connor, On strong matrix summability with respect to a modulus and statistical convergence, Canad. Math. Bull. 32 (1989), no. 2, 194-198.

H. Fast, Sur la convergence Statistique, Colloq. Math., 2 (1951), 241-244.

J. A. Fridy, On Statistical convergence, Analysis, 5 (1985), 301-313.

O. H. H. Edely, M. Mursaleen, On statistical $A$-summability, Math. Comp. Model., 49(2009), no. 8, 672-680.

M. K. Khan and C. Orhan, Characterization of strong and statistical convergences, Publ. Math. Debrecen 76 (2010), no. 1-2, 77-88.

E. Kolk, Matrix summability of Statistically convergent sequences, Analysis, 13(1993), 77-83.

E. Kolk, Matrix maps into the space of statistically convergent bounded sequences, Proc. Estonia Acad. Sci. Phys. Math., 45 (1996), 192-197.

P. Kostyrko, T. Salat, W. Wilczynski, $mathcal{I}$-convergence, Real Anal. Exchange, 26 (2) (2000/2001), 669-685.

B. K. Lahiri and P. Das, $mathcal{I}$ and $mathcal{I^*}$-convergence in topological spaces, Math. Bohemica, 130 (2005), 153-160.

G. Di Maio and L. D. R. Kotildecinac, Statistical convergence in topology, Topology Appl., 156 (2008), no. 1, 28-45.

M. Mursaleen and A. Alotaibi, Statistical summability and approximation by de la Vallepoussin mean, Appl. Math. Lett., 24 (2011), 672-680.

E. Savas, P. Das, S. Dutta, A note on strong matrix summability via ideals, Appl. Math. Lett., 25(2012), 733-738.

E. Savas, P. Das, S. Dutta, A note on some generalized summability methods, Acta Math. Univ. Comenian.(N.S.), 82(2013), no. 2, 297-304.

L. A. Steen and J. A. Seebach, Counterexamples in Topology, Springer-Verlag, New York, 1970.

Z. Tang and F. Lin, Statistical versions of sequential and Frechet-Urysohn spaces, Adv. Math. (China) 44 (2015), no. 6, 945-954.

M. Unver, S. Yardimci, Strong Convergence in Topological Spaces, Methods of Functional Analysis and Topology, Vol. 24 (2018), no. 1, 82-90.

Downloads

Published

05.09.2025

How to Cite

Dutta, S., & Ghosh, R. (2025). Strong Ideal convergence in topological spaces. Sarajevo Journal of Mathematics, 21(1), 115–124. https://doi.org/10.5644/SJM.21.01.10

Issue

Section

Articles