Strong Ideal convergence in topological spaces
DOI:
https://doi.org/10.5644/SJM.21.01.10Keywords:
Topological Space, Statistical Convergence, Ideal Convergence, Strong ConvergenceAbstract
We define two convergence techniques in this study: statistical $A_{\mathcal{T}} $-strong convergence and $ A^{\mathcal{I}}_{\mathcal{T}} $-strong convergence, both of which are generalizations of $A_{\mathcal{T}} $-strong convergence in Hausdorff topological spaces via a certain class of special functions. Similar to the classic scenario, we find some correlations between $ A^{\mathcal{I}} $-statistical convergence and $ A^{\mathcal{I}}_{\mathcal{T}} $-strong convergence. Additionally, we obtain a characterization of $ A^{\mathcal{I}} $-statistical convergence.
Statistics
Abstract: 187 / PDF: 55
References
R. Aldrovandi and J. G. Pereira, An Introduction to Geometrical Physics, World Scientific, 1995.
J. Boos, Classical and Modern Methods in Summability, Oxford Univ. Press, 2000.
H. Cakalli and M. K. Khan, Summability in topological spaces, Appl. Math. Lett. 24 (2011), no. 3, 348-352.
J. S. Connor, The Statistical and strong $p$-Cesaro convergence of sequences, Analysis, 8(1988), 47-63.
J. S. Connor, On strong matrix summability with respect to a modulus and statistical convergence, Canad. Math. Bull. 32 (1989), no. 2, 194-198.
H. Fast, Sur la convergence Statistique, Colloq. Math., 2 (1951), 241-244.
J. A. Fridy, On Statistical convergence, Analysis, 5 (1985), 301-313.
O. H. H. Edely, M. Mursaleen, On statistical $A$-summability, Math. Comp. Model., 49(2009), no. 8, 672-680.
M. K. Khan and C. Orhan, Characterization of strong and statistical convergences, Publ. Math. Debrecen 76 (2010), no. 1-2, 77-88.
E. Kolk, Matrix summability of Statistically convergent sequences, Analysis, 13(1993), 77-83.
E. Kolk, Matrix maps into the space of statistically convergent bounded sequences, Proc. Estonia Acad. Sci. Phys. Math., 45 (1996), 192-197.
P. Kostyrko, T. Salat, W. Wilczynski, $mathcal{I}$-convergence, Real Anal. Exchange, 26 (2) (2000/2001), 669-685.
B. K. Lahiri and P. Das, $mathcal{I}$ and $mathcal{I^*}$-convergence in topological spaces, Math. Bohemica, 130 (2005), 153-160.
G. Di Maio and L. D. R. Kotildecinac, Statistical convergence in topology, Topology Appl., 156 (2008), no. 1, 28-45.
M. Mursaleen and A. Alotaibi, Statistical summability and approximation by de la Vallepoussin mean, Appl. Math. Lett., 24 (2011), 672-680.
E. Savas, P. Das, S. Dutta, A note on strong matrix summability via ideals, Appl. Math. Lett., 25(2012), 733-738.
E. Savas, P. Das, S. Dutta, A note on some generalized summability methods, Acta Math. Univ. Comenian.(N.S.), 82(2013), no. 2, 297-304.
L. A. Steen and J. A. Seebach, Counterexamples in Topology, Springer-Verlag, New York, 1970.
Z. Tang and F. Lin, Statistical versions of sequential and Frechet-Urysohn spaces, Adv. Math. (China) 44 (2015), no. 6, 945-954.
M. Unver, S. Yardimci, Strong Convergence in Topological Spaces, Methods of Functional Analysis and Topology, Vol. 24 (2018), no. 1, 82-90.
Downloads
Published
How to Cite
Issue
Section
License
Copyright is retained by the author(s).

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.





