The Generalized quantum difference operator in $c$ and $c_0$ and their duals

Authors

  • Toseef Ahmed Malik Department of Mathematics, Govt. Boys Higher Secondary School, Darhal & School Education Department, Jammu and Kashmir-185135, India

DOI:

https://doi.org/10.5644/SJM.21.01.11

Keywords:

quantum sequence space, generalized quantum difference operator, Kothe duals, matrix mappings

Abstract

In this article, we present a generalization of the $k^{th}$ order of forward difference operator $\Delta^k$ using its quantum analog $\Delta^k_q$. We study its domains $c(\Delta^k_q)$ and $c_0(\Delta^k_q)$ in the spaces $c$ and $c_0$ of convergent and null sequences, respectively. Additionally, we show that the domains $c(\Delta^k_q)$ and $c_0(\Delta^k_q)$ are $BK$-spaces and linearly isomorphic to $c$ and $c_0$, respectively. Furthermore, we construct Schauder bases and examine the K\"{o}the duals of the spaces $c(\Delta^k_q)$ and $c_0(\Delta^k_q)$. The final segment deals with the characterization of certain class of matrix mappings from the spaces $c(\Delta^k_q)$ and $c_0(\Delta^k_q)$ to the space $\nu\in\{c, c_0, \ell_\infty,~\ell_1\}$.

 

Statistics

Abstract: 276  /   PDF: 62

 

References

B. Altay, On the space of $p$-summable difference sequences of order $m$, $(1leq{p}

H. Aktuglu and S. Bekar, On $q$-Cesaro matrix and $q$-statistical convergence, J. Comput. Appl. Math., 235 (16) (2011), 4717-4723.

A. Alotaibi, T. Yaying, and S. A. Mohiuddine, Sequence spaces and spectrum of $q$-difference operator of second order, Symmetry, 14 (2022), 1155.

A.A. Bakery and K.S. Mohamed, $(r_1,r_2)$-Cesaro summable space of non-absolute type and the involved pre-quasi ideal, J. Inequal. Appl., 43, 2021.

F. Basar, Summability Theory and its application, $2^{nd}$ ed., CRC Press/Taylor & Francis Group, Boca Raton . London . New York, 2022.

G. Bennett, An inequality for Hausdorff means, Houston J. Math., 25 (1999), 709-744.

R. Colak and E. Mikail, On some generalized difference sequence spaces and related matrix transformation, Hokkaido Math. J., 26 (1997), 483-492.

S. Demiriz and A. Sahin, $q$-Cesaro sequence spaces derived by $q$-analogues, Adv. Math., 5 (2016), 97-110.

S. Dutta and P. Baliarsingh, On the spectrum of 2nd order generalized difference operator $Delta^2$ over the sequence space $c_0$, Bol. Soc. Paran. Mat., 31 (2013), 235-244.

S. Dutta and P. Baliarsingh, On the spectra of the generalized $r^{th}$ difference operator $Delta^r_v$ on the sequence space $ell_1$, Appl. Math. Comput., 219 (2012), 1776-1784.

H.B. Ellidokuzoglu and S. Demiriz, On some generalized $q$-difference sequence spaces, AIMS Mathematics, 8(8) (2023), 18606-18617.

M. Et, On some difference sequence spaces, Turkish J. Math., 17 (1993), 18-24.

M. Et and R. Colak, On some generalized difference sequence spaces}, Soochow J. Math., 21 (1995), 377-386.

M. Et, On some topological properties of generalized difference sequence spaces, Int. J. Math. Math. Sci., 24 (2000), 716581.

H.F. Jackson, On $q$-functions and a certain difference operator, Earth and Environmental Sci. Trans. Royal Soc. Ednib., 46 (1908), 253-281.

H. Kizmaz, On certain sequence spaces, Canad. Math. Bull., 24 (2) (1981), 169-176.

V. Kac and P. Cheung, Quantum Calculus; Springer: New York, NY, USA, 2002.

I.J. Maddox, Elements of Functional Analysis, 2nd Edition, The University Press, Cambridge, 1998.

T.A. Malik, $q$-sequence space of non-absolute type and Toeplitz duals, Palestine J. Math. 13(4) (2024), 575-586.

M. Mursaleen and F. Basar, Sequence spaces: Topics in Modern Summability Theory, Series: Mathematics and its Applications, CRC Press/Taylor & Francis Group, Boca Raton . London . New York, 2020.

K. Raj, S.A. Mohiuddine, and S. Jasrotia, Characterization of summing operators in multiplier spaces of deferred Norlund summability, Positivity, 27 (9), 2023.

M.H. Srivastava, Operators of basic (or $q-$) calculus and fractional $q$-calculus and their application in geometric function theory, Iran. J. Sci. Technol. Trans. A Sci., 44 (2020), 327-344.

M. Stieglitz and H. Tietz, Matrixtransformationen von folgenraumen eine ergebnisubersicht, Math. Z., 154 (1977), 1-16.

A. Wilansky, Summability through functional analysis, 1st Edition, North-Holland Mathematics Studies, Elsevier, 2000.

T. Yaying, B. Hazarika, and M. Mursaleen, On sequence space derived by the domain of $q$-Cesaro matrix in $ell_p$ space and the associated operator ideal, J. Math. Anal. Appl., 493 (2021), 124453.

T. Yaying, B. Hazarika, and M. Mursaleen, On generalized $(p,q)$-Euler matrix and associated sequence spaces, J. Funct. Spaces, 2021, 8899960.

T. Yaying, M.T. Kara, B. Hazarika, and E.E. Kara, A study on $q$-analogue of Catalan sequence spaces, Filomat, 37 (2023), 839-850.

T. Yaying, B. Hazarika, and S.A. Mohiuddine, Domain of Padovan $q$-difference matrix in sequence spaces $ell_p$ and $ell_infty$, Filomat, 36 (2022), 905-919.

T. Yaying, B. Hazarika, B.C. Tripathy, and M. Mursaleen, The spectrum of second order quantum difference operator, Symmetry, 14 (2022), 557.

T. Yaying, B. Hazarika, and S.A. Mohiuddine, On difference sequence spaces of fractional-order involving Padovan numbers, Asian-Eur. J. Math., 14 (2021), 2150095.

M. E. Yildirim, The spectrum and fine spectrum of $q$-Cesaro matrices with $0

Downloads

Published

05.09.2025

How to Cite

Malik, T. A. (2025). The Generalized quantum difference operator in $c$ and $c_0$ and their duals. Sarajevo Journal of Mathematics, 21(1), 125–135. https://doi.org/10.5644/SJM.21.01.11

Issue

Section

Articles