Some Solitons on Lorentzian Para-Kenmotsu Manifolds

Authors

  • Abhijit Mandal Raiganj Surendranath Mahavidyalaya, Department of Mathematics, Raiganj, Uttar Dinajpur-733134, West bengal, India
  • Meghlal Mallik Raiganj Surendranath Mahavidyalaya, Department of Mathematics, Raiganj, Uttar Dinajpur-733134, West bengal, India

DOI:

https://doi.org/10.5644/SJM.21.01.13

Keywords:

Lorentzian para-Kenmotsu manifold, Einstien soliton $\eta$-Einstien soliton, $W_{2}$-curvature tensor

Abstract

In this paper we study the nature of the Einstein soliton and $\eta $-Einstein soliton in the framework of Lorentzian para-Kenmotsu manifolds (briefly, LP-Kenmotsu manifolds). We find an expression for scalar curvature of LP-Kenmotsu manifolds admitting the Einstein soliton and $\eta $-Einstein soliton in various cases. We prove that if an LP-Kenmotsu manifold contains
an $\eta $-Einstein soliton with a parallel Reeb vector field then the manifold is $\eta $-Einstein. We study the nature of the $\eta $-Einstein soliton on these manifolds with conformal, collinear and torse forming potential vector fields. We also study the $\eta $-Einstein soliton on these manifolds satisfying the curvature conditions: $\left( \xi .\right) _{R}.S=0, $ $\left( \xi .\right) _{W_{2}}.S=0$ and $\left( \xi .\right) _{S}.W_{2}=0,$ where $R,$ $S$ and $W_{2}$ are, respectively, the Riemannian curvature tensor, Ricci curvature tensor and $W_{2}$-curvature tensor.

 

Statistics

Abstract: 221  /   PDF: 72

 

References

A.M. Blaga, On Gradient $eta $-Einstein solitons, Kragujev. J. Math., Vol. 42(2) (2018), 229-237.

G. Catino and L. Mazzieri, Gradient Einstein Solitons, Nonlinear Anal., Vol. 132 (2016), 66-94.

V. Chandra and S. Lal, On 3-dimensional Lorentzian para-Kenmotsu manifolds, Diff. Geo.-Dynamical System, Vol. 22 (2020), 87-94.

B. Y. Chen, Some results on concircular vector fields on their applications to Ricci solitons, Bull. Korean Math. Soc., 52 (2015), 1535-1547.

R.S. Hamilton, The Ricci flow on surfaces, Math. and General Relativity, American Math. Soc. Contemp. Math., Vol. 7(1) (1988), 232-262.

A. Hasseb and R. Prasad, Certain results on Lorentzian para-Kenmotsu manifolds, Bol. Soc. Paran. Math., Vol. 39(3) (2021), 201-220.

H.G. Nagaraja and C.R. Premalatha, Ricci solitons in Kenmotsu manifolds, J. of Mathematical Analysis, Vol. 3(2) (2012), 18-24.

K. Matsumoto, On Lorentzian paracontact manifolds, Bull. of Yamagata Univ. Nat. Sci., Vol. 12 (1989), 151-156.

T. Mert and M. Atceken, On some important characterizations of Lorentz para-Kenmotsu manifolds on some special curvature tensors, Asian-European Journal of Mathematics, Vol. 17(1) (2024).

T. Mert and M. Atceken, A Note On Pseudoparallel Submanifolds of Lorentzian para-Kenmotsu Manifolds, FILOMAT, Vol. 37(15) (2023), 5095--5107.

T. Mert and M. Atceken, Almost $eta$-Ricci Solitons on the Pseudosymmetric Lorentzian Para-Kenmotsu Manifolds, Earthline Journal of Mathematical Sciences, Vol. 12(2) (2023), 183--206.

G.P. Pokhariyal and R.S. Mishra, The curvature tensor and their reletivistic significance, Yokohoma Mathematical Journal, Vol. 18 (1970), 105-108.

V.V. Reddy, R. Sharma, and S. Sivaramkrishan, Space times through Hawking-Ellis construction with a back ground Riemannian metric, Class Quant. Grav., Vol. 24 (2007), 3339-3345.

K.L.S. Prasad, S.S. Devi and G.V.S.R. Deekshitulu, On a class of Lorentzian para-Kenmotsu manifolds admitting the Weyl-projective curvature tensor of type (1,3), Italian J. Pure & Applied Math., Vol. 45 (2021), 990-1001.

I. Sato, On a structure similar to the almost contact structure II, Tensor N. S., 31 (1977), 199-205.

R. Sharma, Certain results on K-contact and $left( k,mu right) $textit{-contact manifolds, J. of Geometry., Vol. 89 (2008), 138-147.

N.V.C. Sukhla and A. Dixit, On $phi $-recurrent Lorentzian para-Kenmotsu manifolds, International Journal of Mathematics and Computer Applications Research, Vol. 10(2) (2020), 13-20.

M.M. Tripathi, Ricci solitons in contact metric manifold, ArXiv: 0801. 4222 vl [math. D. G.], (2008).

K. Yano, Concircular geometry I, concircular transformations, Proc. Imp. Acad. Tokyo, Vol. 16 (1940), 195-200.

K. Yano, On torse forming direction in a Riemannian space, Proc. Imp. Acad. Tokyo, 20 (1944), 340-345.

K. Yano and B. Y. Chen, On the concurrent vector fields on immersed manifolds, Kodai Math. Sem. Rep., 23 (1971), 343-350.

Downloads

Published

05.09.2025

How to Cite

Mandal, A., & Mallik, M. (2025). Some Solitons on Lorentzian Para-Kenmotsu Manifolds. Sarajevo Journal of Mathematics, 21(1), 149–161. https://doi.org/10.5644/SJM.21.01.13

Issue

Section

Articles